Utilization of agricultural by-products in animal nutrition is a matter of great concern. Dried sweet orange (Citrus sinensis) pulp (DCSP) is a potential source of valuable nutrients and natural antioxidants for poultry feed. In the experiment, a feeding trial was conducted in order to investigate the effect of different levels of dried orange residues in diet on broiler growth performance, carcass characteristics, blood metabolites, humoral immunity, and cecum microbial population. A total of 200 one day experimental broiler chicks were distributed into a completely randomized design (CRD) which included 5 dietary treatments with 4 replicates per each treatment and 10 birds fed in each replicate. The experimental treatments consist of a control group (without additive), 0.5%, 1.0%, 1.5%, and 2% of DCSP (residue) in diet. Weight gain, feed intake and feed conversion ratio (FCR) were measured. Blood parameters and carcass traits were measured in the postnatal 35th day. The highest level of dried orange residues in treatment 5 (T5) had significantly increased the feed intake and body weight of broilers in groups and overall during the rearing period (P > 0.05). Different levels of dried orange residues had no significant effect on chicken FCR. Using of dried orange residues significantly decreased the liver and abdominal fat of broilers (P < 0.05). T5 has also significantly lower level of triglyceride than the control (T1) and treatment 2 (T2) (P < 0.05). In conclusion, the use of dried orange residues improved some performance (e.g. feed intake and body weight gain), decreased liver and abdominal fat and also serum triglyceride level in broiler chicken.
The Vlasov equation is simulated by following the characteristics of phase points in phase space. It is shown that by increasing the number of phase points, without enhancing the resolution of phase-space grid, the accuracy of the simulation will be improved. In addition, the phase-point spacing introduces a smaller scale than grid spacing on which fine structures might be more conveniently handled. In order to perform simulation with a large population of phase points, an alternative to the bilinear interpolation scheme is introduced that reduces the number of operations. It is shown that by randomizing initial phase-point velocities, the recurrence effect does not happen. Finally, the standard problem of linear and nonlinear Landau damping will be examined.
Using the reductive perturbation technique, the modulational instability of ion- acoustic waves in a plasma containing superthermal electrons is studied. It is found that the presence of superthermal electrons significantly changes the instability domain. A Lorentzian (kappa) velocity distribution function is used to model superthermal electrons. It is shown that the presence of superthermal electrons reduces the critical frequency of the modulational instability of ion-acoustic waves. Besides, due to the presence of the superthermal electrons, ion-acoustic waves are unstable on a vaster region. Moreover, the modulational instability growth rate is larger for a larger population of superthermal electrons.
A model for describing the physics of both superthermal and trapped electrons is presented. This is important because most of the space and some of the laboratory plasmas contain a population of superthermal particles. Due to the superthermal electrons, a high-energy tail appears in the electron distribution function that is conveniently modeled by the κ distribution function. The distribution function of trapped particles is modeled based on the simulation result of the Vlasov-Poisson system of equations. An analytical expression for the electron density is obtained. The ion-acoustic solitons are studied in this framework.
A series of numerical simulations is presented, based on a recurrence-free Vlasov kinetic model using kinetic phase point trajectories. All plasma components are modeled kinetically via a Vlasov evolution equation, then coupled through Poisson's equation. The dynamics of ion acoustic waves in an electron-ion and in a dusty (electron-ion-dust) plasma configuration are investigated, focusing on wave decay due to Landau damping and, in particular, on the parametric dependence of the damping rate on the dust concentration and on the electron-to-ion temperature ratio. In the absence of dust, the occurrence of damping was observed, as expected, and its dependence to the relative magnitude of the electron vs ion temperature(s) was investigated. When present, the dust component influences the charge balance, enabling dust-ion acoustic waves to survive Landau damping even in the extreme regime where T e^Ti . The Landau damping rate is shown to be minimized for a strong dust concentration or=and for a high value of the electron-to-ion temperature ratio. Our results confirm earlier theoretical considerations and contribute to the interpretation of experimental observations of dust-ion acoustic wave characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.