Abstract-Electric city commuters are vehicles used for commuting from suburbs to inner cities and for movement within cities. Because of the short distances that they cover and their small battery size, such vehicles are beginning to attract attention. Generally, a high-performance permanent magnet (PM) composed of rare earth elements, such as neodymium and dysprosium, is used in the inwheel PM synchronous motor (PMSM) of an electric city commuter. However, rising prices of rare earth elements and export restrictions on them are serious problems. Development of an in-wheel PMSM that does not utilize rare earth PMs is therefore highly desirable for electric city commuter vehicles. Accordingly, our research group has focused on a surface PM type axial gap structure that can achieve a high torque density and a short motor length in the axial direction. The designed motor structure with ferrite PMs replacing the rare earth PMs and the results of a three-dimensional finite element analysis are introduced in detail in this paper. Moreover, to examine the fundamental characteristics of the designed motor, a prototype is produced and tested.Index Terms-permanent magnet synchronous motor, electric city commuter, axial gap motor, surface permanent magnet rotor structure, ferrite permanent magnet
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.