We examined a pain-related syndrome, which includes mechanical allodynia and autotomy, in rats after ischemic spinal cord injury photochemically induced by laser irradiation for 5-20 min. This procedure results in an acute allodynia-like phenomenon which lasts for several days and is possibly related to dysfunction of the GABAB system in the spinal cord. In some animals this is followed by a chronic allodynia-like symptom with an onset varying between 1 week and 1.5 months after injury, expressed as a clearly painful reaction to light pressure applied to a skin area at or near the dermatome of the injured spinal segments. In the majority of rats the allodynia persists over several months, in some cases accompanied by autotomy of the hind paws. Pharmacological studies indicated that the allodynia in the majority of rats could be relieved by systemic tocainide (75 mg/kg). Morphine was only effective at a sedative dose (5 mg/kg). The allodynia was not relieved by baclofen, muscimol, clonidine or carbamazepine. Low-dose systemic pentobarbital (5 mg/kg) had a slight beneficial effect. Guanethidine (20 mg/kg, s.c.) did not abolish the allodynia in most of the rats. Histological examination revealed massive damage in the spinal cord. The dorsal roots of the irradiated segments were also injured. No morphological abnormalities were seen in the dorsal root ganglia. The mechanism that may account for this chronic pain-related syndrome in spinally injured rats probably involves abnormalities in the central nervous system. The allodynia seen in chronic spinally injured rats was similar to some painful symptoms in patients after spinal cord injury or stroke. It is suggested that the chronic allodynia-like phenomenon may represent an animal model for studying the mechanisms of chronic central pain.
We report behaviours suggesting the presence of allodynia elicited by non-noxious brushing and mechanical pressure following photochemically induced ischaemic spinal cord injury in the rat. Female rats were intravenously injected with Erythrosin B and the T10 vertebra was irradiated with a laser beam for 1, 5 or 10 min. These procedures initiated an intravascular photochemical reaction, resulting in ischaemic spinal cord injury. After irradiation a clear allodynia was observed in most rats. The animals vocalized intensely to light touch during gentle handling and were clearly agitated to light brushing of the flanks. The vocalization threshold in response to the mechanical pressure measured with von Frey hairs was markedly decreased during this period. In some animals the existence of spontaneous pain was suggested by spontaneous vocalization. The duration of the allodynia varied among animals from several hours to several days. The severity and duration of allodynia seemed not to be related to the duration of irradiation. In sham-operated rats a slight, transient allodynia was also noted around the wound within a few hours after surgery, which was effectively relieved by systemic morphine (2 mg/kg, i.p.). Morphine (2 mg/kg, i.p.) also partially relieved the allodynia in spinally injured rats 4 h after irradiation. However, morphine, even at a higher dose (5 mg/kg, i.p.), failed to alleviate the allodynia in spinally injured rats 24-48 h after the injury. Systemic injection of the GABAB agonist baclofen (0.01-0.1 mg/kg, i.p.), but not the GABAA agonist muscimol (1 mg/kg, i.p.), effectively relieved allodynia during this period. Pretreatment with guanethidine 24 h and just prior to the irradiation (20 mg/kg, s.c.) did not prevent the occurrence of allodynia in spinal cord injured rats. The present observation is the first to show that ischaemic spinal cord injury could result in cutaneous mechanical allodynia. This phenomenon is resistant to morphine and may not involve the sympathetic system. Histological examination of allodynic animals 3 days after spinal cord injury revealed considerable morphological damage in the dorsal spinal cord of a rat irradiated for 5 min. The related dorsal roots were also slightly affected in this animal, while the dorsal root ganglia were normal. However, in rats irradiated for 1 min, despite the existence of strong allodynia, no damage could be found at this time in the spinal cord, dorsal roots or dorsal root ganglia. It is suggested that functional deficits in the GABAB system in the spinal cord may be related to this allodynia-like phenomenon.(ABSTRACT TRUNCATED AT 400 WORDS)
Peripheral transganglionic transport of horseradish peroxidase (HRP) was used to label afferent fibers in the taste buds and lingual epithelium 2-12 weeks after chronic chorda tympani or combined chorda tympani-lingual nerve lesions. From 4-12 weeks after a chronic chorda tympani lesion, taste buds could be found. These were innervated by fibers from the ipsilateral lingual nerve. From 8-12 weeks after a chronic chorda tympani-lingual nerve lesion, nerve fibers from the contralateral lingual nerve could be found in a few taste buds on the denervated side of the tongue. Thus, collateral sprouting took place over the midline in this instance. These findings indicate that intact gustatory axons do not sprout into denervated taste buds, but trigeminal fibers in the lingual nerve do have this ability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.