In this study, estimation capacities of response surface methodology (RSM) and artificial neural network (ANN) in a heterogeneous photo-Fenton process were investigated. The zeolite Fe-ZSM5 was used as heterogeneous catalyst of the process for degradation of C.I. Acid Red 14 azo dye. The efficiency of the process was studied as a function of four independent variables, concentration of the catalyst, molar ratio of initial concentration of H2O2 to that of the dye (H value), initial concentration of the dye and initial pH of the solution. First, a central composite design (CCD) and response surface methodology were used to evaluate simple and combined effects of these parameters and to optimize process efficiency. Satisfactory prediction second-order regression was derived by RSM. Then, the independent parameters were fed as inputs to an artificial neural network while the output of the network was the degradation efficiency of the process. The multilayer feed-forward networks were trained by the sets of input-output patterns using a backpropagation algorithm. Comparable results were achieved for data fitting by using ANN and RSM. In both methods, the dye mineralization process was mainly influenced by pH and the initial concentration of the dye, whereas the other factors showed lower effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.