Piezocatalysis,converting mechanical vibration into chemical energy,h as emerged as ap romising candidate for water-splitting technology.H owever,t he efficiency of the hydrogen production is quite limited. We herein report welldefined 10 nm BaTiO 3 nanoparticles (NPs) characterized by al arge electro-mechanical coefficient which induces ah igh piezoelectric effect. Atomic-resolution high angle annular dark field scanning transmission electron microscopy(HAADF-STEM) and scanning probe microscopy(SPM) suggests that piezoelectric BaTiO 3 NPs displayac oexistence of multiple phases with lowe nergy barriers and polarization anisotropy which results in ahigh electro-mechanical coefficient. Landau free energy modeling also confirms that the greatly reduced polarization anisotropyf acilitates polarization rotation. Employing the high piezoelectric properties of BaTiO 3 NPs,w e demonstrate an overall water-splitting process with the highest hydrogen production efficiency hitherto reported, with aH 2 production rate of 655 mmol g À1 h À1 ,whichcould rival excellent photocatalysis system. This study highlights the potential of piezoelectric catalysis for overall water splitting.
Although 10 years have passed since the initial report of ferroelectricity in hafnia (HfO2), researchers are still intensely fascinated by this material system and the promise it holds for future applications. A wide variety of deposition methods have been deployed to create ferroelectric HfO2 thin films such as atomic layer deposition, chemical solution deposition, and physical vapor deposition methods such as sputtering and pulsed laser deposition. Process and design parameters such as deposition temperature, precursor choice, target source, vacuum level, reactive gases, substrate strain, and many others are often integral in stabilizing the polar orthorhombic phase and ferroelectricity. We examine processing parameters across four main different deposition methods and their effect on film microstructure, phase evolution, defect concentration, and resultant electrical properties. The goal of this review is to integrate the process knowledge collected over the past 10 years in the field of ferroelectric HfO2 into a single comprehensive guide for the design of future HfO2-based ferroelectric materials and devices.
Polymorphic (HfxZr1−x)O2 (HZO) thin films exhibit ferroelectric, dielectric, and antiferroelectric properties across a wide compositional range due to the existence of orthorhombic, monoclinic, and tetragonal phases. To better understand the phase stability across the HfO2–ZrO2 compositional range, we investigate the structural evolution of HZO thin films in situ via high-temperature x-ray diffraction (HTXRD) for five different compositions [ZrO2, (Hf0.23Zr0.77)O2, (Hf0.43Zr0.57)O2, (Hf0.67Zr0.33)O2, and HfO2]. The real-time monitoring of HZO crystallization reveals a competing driving force between the tetragonal and monoclinic phase stabilities for HfO2-rich vs ZrO2-rich compositions. Additionally, we confirm an XRD peak shift toward lower 2θ with increasing temperature in ZrO2, (Hf0.23Zr0.77)O2, and (Hf0.43Zr0.57)O2 films, which we ascribe to the appearance of a metastable orthorhombic phase during heating. A monotonic trend for the onset crystallization temperature is reported for five compositions of HZO and reveals an increase in onset crystallization temperature for HfO2-rich compositions. Relative intensity fraction calculations suggest a higher fraction of monoclinic phase with increasing annealing temperature for (Hf0.67Zr0.33)O2. This study of phase stability and onset crystallization temperatures offers insight for managing the thermal budget for HZO thin films, especially for temperature-constrained processing.
Piezocatalysis,converting mechanical vibration into chemical energy,h as emerged as ap romising candidate for water-splitting technology.H owever,t he efficiency of the hydrogen production is quite limited. We herein report welldefined 10 nm BaTiO 3 nanoparticles (NPs) characterized by al arge electro-mechanical coefficient which induces ah igh piezoelectric effect. Atomic-resolution high angle annular dark field scanning transmission electron microscopy(HAADF-STEM) and scanning probe microscopy(SPM) suggests that piezoelectric BaTiO 3 NPs displayac oexistence of multiple phases with lowe nergy barriers and polarization anisotropy which results in ahigh electro-mechanical coefficient. Landau free energy modeling also confirms that the greatly reduced polarization anisotropyf acilitates polarization rotation. Employing the high piezoelectric properties of BaTiO 3 NPs,w e demonstrate an overall water-splitting process with the highest hydrogen production efficiency hitherto reported, with aH 2 production rate of 655 mmol g À1 h À1 ,whichcould rival excellent photocatalysis system. This study highlights the potential of piezoelectric catalysis for overall water splitting.
We introduce an Atomic Layer Deposition (ALD) technique referred to here as Sequential, No-Atmosphere Processing (SNAP) to fabricate ferroelectric Hf0.5Zr0.5O2 capacitors in Metal–Ferroelectric–Metal (MFM) structures. SNAP involves the ALD of each layer sequentially while maintaining the sample under vacuum process conditions without ambient exposure during the entire sequential deposition processes. We first use plasma enhanced ALD to fabricate 002-textured TiN films and study the degree of texture and quality of the film by X-ray Diffraction (XRD), Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), and transmission electron microscopy. Building upon the textured TiN film, we fabricate MFM capacitors with 10-nm-thick Hf0.5Zr0.5O2 via SNAP deposition and observe an unexpectedly large remanent polarization (2Pr = 54.2 μC/cm2). We report that annealing at T <800 °C and at T = 800 °C results in different ferroelectric behaviors and phases determined by grazing incidence XRD patterns. We infer that the nonpolar tetragonal phase is dominant in films treated at T <800 °C, whereas the polar orthorhombic phase is dominant in films treated at T = 800 °C. Using ToF-SIMS and x-ray spectroscopy depth profiling on MFM capacitors, we observe an increase in the concentration of defects in the Hf0.5Zr0.5O2 layer after annealing. We believe that the absence of the native passive layer between Hf0.5Zr0.5O2 and TiN layers made via SNAP deposition is responsible for the unexpectedly large remanent polarization. In addition, we associate the 002-textured TiN as potentially playing a role in realizing the unexpectedly large remanent polarization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.