In materials with strong local Coulomb interactions, simple defects such as atomic substitutions strongly affect both macroscopic and local properties of the system. A nonmagnetic impurity, for instance, is seen to induce magnetism nearby. Even without disorder, models of such correlated systems are generally not soluble in 2 or 3 dimensions, and so few exact results are known for the properties of such impurities. Nevertheless, some simple physical ideas have emerged from experiments and approximate theories. Here, we first review what we can learn about this problem from 1D antiferromagnetically correlated systems. We then discuss experiments on the high Tc cuprate normal state which probe the effect of impurities on local charge and spin degrees of freedom, and compare with theories of single impurities in correlated hosts, as well as phenomenological effective Kondo descriptions. Subsequently, we review theories of impurities in d-wave superconductors including residual quasiparticle interactions, and compare with experiments in the superconducting state. We argue that existing data exhibit a remarkable similarity to impurity-induced magnetism in the 1D case, implying the importance of electronic correlations for the understanding of these phenomena, and suggesting that impurities may provide excellent probes of the still poorly understood ground state of the cuprates.Comment: 66 pages, 48 figures, review articl
We report NMR shift AK and T\ data of 89 Y taken from 77 to 300 K in YBa 2 Cu 3 0 6 +x for 0.35 < x < 1, from the insulating to the metallic state. A Korringa law and therefore a Fermi-liquid picture is found to apply for the spin part K 5 of AK. The spin contribution x*ix 9 T) to Xm is singled out, as the T variation of AK scales linearly with the macroscopic susceptibility # m . This implies that Cu(3
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.