We analyzed 700 million words, phrases, and topic instances collected from the Facebook messages of 75,000 volunteers, who also took standard personality tests, and found striking variations in language with personality, gender, and age. In our open-vocabulary technique, the data itself drives a comprehensive exploration of language that distinguishes people, finding connections that are not captured with traditional closed-vocabulary word-category analyses. Our analyses shed new light on psychosocial processes yielding results that are face valid (e.g., subjects living in high elevations talk about the mountains), tie in with other research (e.g., neurotic people disproportionately use the phrase ‘sick of’ and the word ‘depressed’), suggest new hypotheses (e.g., an active life implies emotional stability), and give detailed insights (males use the possessive ‘my’ when mentioning their ‘wife’ or ‘girlfriend’ more often than females use ‘my’ with ‘husband’ or 'boyfriend’). To date, this represents the largest study, by an order of magnitude, of language and personality.
Language use is a psychologically rich, stable individual difference with well-established correlations to personality. We describe a method for assessing personality using an open-vocabulary analysis of language from social media. We compiled the written language from 66,732 Facebook users and their questionnaire-based self-reported Big Five personality traits, and then we built a predictive model of personality based on their language. We used this model to predict the 5 personality factors in a separate sample of 4,824 Facebook users, examining (a) convergence with self-reports of personality at the domain- and facet-level; (b) discriminant validity between predictions of distinct traits; (c) agreement with informant reports of personality; (d) patterns of correlations with external criteria (e.g., number of friends, political attitudes, impulsiveness); and (e) test-retest reliability over 6-month intervals. Results indicated that language-based assessments can constitute valid personality measures: they agreed with self-reports and informant reports of personality, added incremental validity over informant reports, adequately discriminated between traits, exhibited patterns of correlations with external criteria similar to those found with self-reported personality, and were stable over 6-month intervals. Analysis of predictive language can provide rich portraits of the mental life associated with traits. This approach can complement and extend traditional methods, providing researchers with an additional measure that can quickly and cheaply assess large groups of participants with minimal burden.
Hostility and chronic stress are known risk factors for heart disease, but they are costly to assess on a large scale. We used language expressed on Twitter to characterize community-level psychological correlates of age-adjusted mortality from atherosclerotic heart disease (AHD). Language patterns reflecting negative social relationships, disengagement, and negative emotions—especially anger—emerged as risk factors; positive emotions and psychological engagement emerged as protective factors. Most correlations remained significant after controlling for income and education. A cross-sectional regression model based only on Twitter language predicted AHD mortality significantly better than did a model that combined 10 common demographic, socioeconomic, and health risk factors, including smoking, diabetes, hypertension, and obesity. Capturing community psychological characteristics through social media is feasible, and these characteristics are strong markers of cardiovascular mortality at the community level.
SignificanceDepression is disabling and treatable, but underdiagnosed. In this study, we show that the content shared by consenting users on Facebook can predict a future occurrence of depression in their medical records. Language predictive of depression includes references to typical symptoms, including sadness, loneliness, hostility, rumination, and increased self-reference. This study suggests that an analysis of social media data could be used to screen consenting individuals for depression. Further, social media content may point clinicians to specific symptoms of depression.
Language data available through social media provide opportunities to study people at an unprecedented scale. However, little guidance is available to psychologists who want to enter this area of research. Drawing on tools and techniques developed in natural language processing, we first introduce psychologists to social media language research, identifying descriptive and predictive analyses that language data allow. Second, we describe how raw language data can be accessed and quantified for inclusion in subsequent analyses, exploring personality as expressed on Facebook to illustrate. Third, we highlight challenges and issues to be considered, including accessing and processing the data, interpreting effects, and ethical issues. Social media has become a valuable part of social life, and there is much we can learn by bringing together the tools of computer science with the theories and insights of psychology. (PsycINFO Database Record
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.