In the hole-doped cuprates, a small number of carriers suppresses antiferromagnetism and induces superconductivity. In the electron-doped cuprates, on the other hand, superconductivity appears only in a narrow window of high-doped Ce concentration after reduction annealing, and strong antiferromagnetic correlation persists in the superconducting phase. Recently, Pr1.3−xLa0.7CexCuO4 (PLCCO) bulk single crystals annealed by a protect annealing method showed a high critical temperature of around 27 K for small Ce content down to 0.05. Here, by angle-resolved photoemission spectroscopy measurements of PLCCO crystals, we observed a sharp quasi-particle peak on the entire Fermi surface without signature of an antiferromagnetic pseudogap unlike all the previous work, indicating a dramatic reduction of antiferromagnetic correlation length and/or of magnetic moments. The superconducting state was found to extend over a wide electron concentration range. The present results fundamentally challenge the long-standing picture on the electronic structure in the electron-doped regime.
We have studied electronic structure of triangular lattice Ir1−xPtxTe2 superconductor using photoemission spectroscopy and model calculations. Ir 4f core-level photoemission spectra show that Ir 5d t2g charge modulation established in the low temperature phase of IrTe2 is suppressed by Pt doping. This observation indicates that the suppression of charge modulation is related to the emergence of superconductivity. Valence-band photoemission spectra of IrTe2 suggest that the Ir 5d charge modulation is accompanied by Ir 5d orbital reconstruction. Based on the photoemission results and model calculations, we argue that the orbitally-induced Peierls effect governs the charge and orbital instability in the Ir1−xPtxTe2.
An energy gap is, in principle, a dominant parameter in superconductivity. However, this view has been challenged for the case of high-Tc cuprates, because anisotropic evolution of a d-wave-like superconducting gap with underdoping has been difficult to formulate along with a critical temperature Tc. Here we show that a nodal-gap energy 2ΔN closely follows 8.5 kBTc with underdoping and is also proportional to the product of an antinodal gap energy Δ* and a square-root superfluid density √Ps for Bi2Sr2CaCu2O8+δ, using low-energy synchrotron-radiation angle-resolved photoemission. The quantitative relations imply that the distinction between the nodal and antinodal gaps stems from the separation of the condensation and formation of electron pairs, and that the nodal-gap suppression represents the substantial phase incoherence inherent in a strong-coupling superconducting state. These simple gap-based formulae reasonably describe a crucial part of the unconventional mechanism governing Tc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.