In this paper, a new Maximum Power Point Tracking (MPPT) control for a Photovoltaic (PV) system is developed based on both backstepping and terminal sliding mode approaches. This system is composed of a solar array, a DC/DC boost converter, an MPPT controller, and an output load. The Backstepping Terminal Sliding Mode Controller (BTSMC) is used via a DC-DC boost converter to achieve maximum power output. The stability of the closed-loop system is guaranteed using the Lyapunov method. This novel approach provides good transient response, low tracking error, and very fast reaction against solar radiation and PV cell temperature variations. Furthermore, chattering, which constitutes the main disadvantage of the classic sliding mode technique is eliminated. To show the effectiveness and robustness of the proposed control, different simulations under different atmospheric conditions are conducted in Matlab/Simulink.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.