The advanced medical imaging provides various advantages to both the patients and the healthcare providers. Medical Imaging truly helps the doctor to determine the inconveniences in a human body and empowers them to make better choices. Deep learning has an important role in the medical field especially for medical image analysis today. It is an advanced technique in the machine learning concept which can be used to get efficient output than using any other previous techniques. In the anticipated work deep learning is used to find the presence of interstitial lung diseases (ILD) by analyzing high-resolution computed tomography (HRCT) images and identifying the ILD category. The efficiency of the diagnosis of ILD through clinical history is less than 20%. Currently, an open chest biopsy is the best way of confirming the presence of ILD. HRCT images can be used effectively to avoid open chest biopsy and improve accuracy. In this proposed work multi-label classification is done for 17 different categories of ILD. The average accuracy of 95% is obtained by extracting features with the help of a convolutional neural network (CNN) architecture called SmallerVGGNet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.