Invasive nonnative grasses pose a significant threat to rangelands of the Northern Great Plains. Long-term data from a grazing experiment near Mandan, ND (46°46′11.43″N, 100°54′55.16″W) revealed the invasion of native prairie by Kentucky bluegrass, an exotic grass. We hypothesized that bluegrass invasion altered soil13C and15N levels, tracking the increased abundance of invasive cool-season grass aboveground. In 2014, soil samples were collected to depths of 0 to 7.6 cm and 7.6 to 15.2 cm in pastures grazed similarly since 1916. Samples were analyzed for total carbon (C) and nitrogen (N) and13C and15N isotopes and compared against archived samples from 1991. Vegetation change from native to exotic grasses changed the isotopic composition of soil C. The soil δ13C at the 0- to 7.6-cm depth became more negative between 1991 and 2014. Soil δ13C became less negative with increasing stocking rate at both soil depths. Soil δ15N values at the 0- to 7.6-cm depth decreased between 1991 and 2014. Soil δ15N increased with increasing stocking rate at the 0- to 7.6-cm depth in 2014. Soil C and N concentrations at 0 to 7.6 cm increased by 35% (12 g C kg−1) and 27% (0.9 g N kg−1), respectively, from 1991 to 2014; however, concentrations at the 7.6- to 15.2-cm depth did not change. The shift from native C4to invasive C3grass did not reduce soil C storage in the long-term prairie pastures. The more deleterious effect of invasion, however, may have been the buildup of dead biomass, which alters vegetation structure and may reduce native species’ diversity and abundance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.