In this paper, we present a detailed analysis of a coronal blowout jet eruption which was associated with an obvious extreme-ultraviolet (EUV) wave and one complicated coronal mass ejection (CME) event based on the multi-wavelength and multi-view-angle observations from Solar Dynamics Observatory and Solar Terrestrial Relations Observatory. It is found that the triggering of the blowout jet was due to the emergence and cancellation of magnetic fluxes on the photosphere. During the rising stage of the jet, the EUV wave appeared just ahead of the jet top, lasting about 4 minutes and at a speed of 458 -762 km s −1 . In addition, obvious dark material is observed along the EUV jet body, which confirms the observation of a mini-filament eruption at the jet base in the chromosphere. Interestingly, two distinct but overlapped CME structures can be observed in corona together with the eruption of the blowout jet. One is in narrow jet-shape, while the other one is in bubble-shape. The jet-shaped component was unambiguously related with the outwardly running jet itself, while the bubble-like one might either be produced due to the reconstruction of the high coronal fields or by the internal reconnection during the mini-filament ejection according to the double-CME blowout jet model firstly proposed by , suggesting more observational evidence should be supplied to clear the current ambiguity based on large samples of blowout jets in future studies.
Quasi-periodic fast-propagating (QFP) magnetosonic waves and extreme ultraviolet (EUV) waves were proposed to be driven by solar flares and coronal mass ejections (CMEs), respectively. In this Letter, we present a detailed analysis of an interesting event in which we find that both QFP magnetosonic waves and EUV waves are excited simultaneously in one solar eruption event. The co-existence of the two wave phenomena offers an excellent opportunity to explore their driving mechanisms. The QFP waves propagate in a funnel-like loop system with a speed of 682-837 km s −1 and a lifetime of 2 minutes. On the contrary, the EUV waves, which present a faster component and a slower component, propagate in a wide angular extent, experiencing reflection and refraction across a magnetic quasiseparatrix layer. The faster component of the EUV waves travels with a speed of 412-1287 km s −1 , whereas the slower component travels with a speed of 246-390 km s −1 . The lifetime of the EUV waves is ∼15 minutes. It is revealed that the faster component of the EUV waves is cospatial with the first wavefront of the QFP wave train. Besides, The QFP waves have a period of about 45±5 seconds, which is absent in the associated flares. All these results imply that QFP waves can also be excited by mass ejections, including CMEs or jets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.