A rational approach has been applied to design a new environmentally acceptable and industrially viable enzymatic scouring process. Owing to the substrate specificity, the selection of enzymes depends on the structure and composition of the substrate, i.e. cotton fibre. The structure and composition of the outer layers of cotton fibre has been established on the basis of thorough literature study, which identifies wax and pectin removal to be the key steps for successful scouring process. Three main issues are discussed here, i.e. benchmarking of the existing alkaline scouring process, an evaluation of several selected acidic and alkaline pectinases for scouring, and the effect of wax removal treatment on pectinase performance. It has been found that the pectinolytic capability of alkaline pectinases on cotton pectin is nearly 75% higher than that of acidic pectinases. It is concluded that an efficient wax removal prior to pectinase treatment indeed results in improved performance in terms of hydrophilicity and pectin removal. To evaluate the hydrophilicity, the structural contact angle (theta) was measured using an auto-porosimeter.
A gelatinase-based device for fast detection of wound infection was developed. Collective gelatinolytic activity in infected wounds was 23 times higher (p ≤ 0.001) than in noninfected wounds and blisters according to the clinical and microbiological description of the wounds. Enzyme activities of critical wounds showed 12-fold elevated enzyme activities compared with noninfected wounds and blisters. Upon incubation of gelatin-based devices with infected wound fluids, an incubation time of 30 minutes led to a clearly visible dye release. A 32-fold color increase was measured after 60 minutes. Both matrix metalloproteinases and elastases contributed to collective gelatinolytic enzyme activity as shown by zymography and inhibition experiments. The metalloproteinase inhibitor 1,10-phenanthroline (targeting matrix metalloproteinases) and the serine protease inhibitor phenylmethlysulfonyl fluoride (targeting human neutrophil elastase) inhibited gelatinolytic activity in infected wound fluid samples by 11-37% and 60-95%, respectively. Staphylococcus aureus and Pseudomonas aeruginosa, both known for gelatinase production, were isolated in infected wound samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.