[1] The atmospheric budget and distribution of acetone are investigated by using a priori estimates of sources and sinks to constrain a global three-dimensional atmospheric model simulation and then using atmospheric observations from 14 surface sites and 5 aircraft missions to improve these estimates through an inversion analysis. Observations over the South Pacific imply a large photochemical marine source of acetone, either from the ocean or from marine organic aerosol. Low concentrations of acetone measured at European sites in winter-spring and in the Arctic in summer suggest a large microbial ocean sink. The summer-to-fall decrease of concentrations observed in Europe argues against a large source from plant decay. Continental observations in the tropics and at northern midlatitudes in summer imply a large source from terrestrial vegetation. Observations in the Northern Hemisphere outside summer imply a large source from atmospheric oxidation of anthropogenic isoalkanes (propane, isobutane, isopentane). Model simulation of isoalkanes and comparison to observations yields best global emission estimates of 12 Tg C yr À1 for propane (including only 0.6 Tg C yr À1 from biomass burning), 3.6 Tg C yr À1 for isobutane, and 5.0 Tg C yr À1 for isopentane. Our best estimate of the global acetone source is 95 Tg yr À1 . The mean tropospheric lifetime of acetone is estimated to be 15 days. Terrestrial vegetation and oceans are the principal sources of acetone in the tropopause region (0.1 -0.7 ppbv) except in the extratropical Northern Hemisphere, where oxidation of isoalkanes is more important.
[1] We use a global three-dimensional model simulation of atmospheric methanol to examine the consistency between observed atmospheric concentrations and current understanding of sources and sinks. Global sources in the model include 128 Tg yr À1 from plant growth, 38 Tg yr À1 from atmospheric reactions of CH 3 O 2 with itself and other organic peroxy radicals, 23 Tg yr À1 from plant decay, 13 Tg yr À1 from biomass burning and biofuels, and 4 Tg yr À1 from vehicles and industry. The plant growth source is a factor of 3 higher for young than from mature leaves. The atmospheric lifetime of methanol in the model is 7 days; gas-phase oxidation by OH accounts for 63% of the global sink, dry deposition to land 26%, wet deposition 6%, uptake by the ocean 5%, and aqueous-phase oxidation in clouds less than 1%. The resulting simulation of atmospheric concentrations is generally unbiased in the Northern Hemisphere and reproduces the observed correlations of methanol with acetone, HCN, and CO in Asian outflow. Accounting for decreasing emission from leaves as they age is necessary to reproduce the observed seasonal variation of methanol concentrations at northern midlatitudes. The main model discrepancy is over the South Pacific, where simulated concentrations are a factor of 2 too low. Atmospheric production from the CH 3 O 2 self-reaction is the dominant model source in this region. A factor of 2 increase in this source (to 50-100 Tg yr À1 ) would largely correct the discrepancy and appears consistent with independent constraints on CH 3 O 2 concentrations. Our resulting best estimate of the global source of methanol is 240 Tg yr À1. More observations of methanol concentrations and fluxes are needed over tropical continents. Better knowledge is needed of CH 3 O 2 concentrations in the remote troposphere and of the underlying organic chemistry.
[1] We use observations from two aircraft during the ICARTT campaign over the eastern United States and North Atlantic during summer 2004, interpreted with a global 3-D model of tropospheric chemistry (GEOS-Chem) to test current understanding of regional sources, chemical evolution, and export of NO x . The boundary layer NO x data provide top-down verification of a 50% decrease in power plant and industry NO x emissions over the eastern United States between 1999 and 2004. Observed NO x concentrations at 8-12 km altitude were 0.55 ± 0.36 ppbv, much larger than in previous U.S. aircraft campaigns (ELCHEM, SUCCESS, SONEX) though consistent with data from the NOXAR program aboard commercial aircraft. We show that regional lightning is the dominant source of this upper tropospheric NO x and increases upper tropospheric ozone by 10 ppbv. Simulating ICARTT upper tropospheric NO x observations with GEOS-Chem requires a factor of 4 increase in modeled NO x yield per flash (to 500 mol/ flash). Observed OH concentrations were a factor of 2 lower than can be explained from current photochemical models, for reasons that are unclear. A NO y -CO correlation analysis of the fraction f of North American NO x emissions vented to the free troposphere as NO y (sum of NO x and its oxidation products) shows observed f = 16 ± 10% and modeled f = 14 ± 9%, consistent with previous studies. Export to the lower free troposphere is mostly HNO 3 but at higher altitudes is mostly PAN. The model successfully simulates NO y export efficiency and speciation, supporting previous model estimates of a large U.S. anthropogenic contribution to global tropospheric ozone through PAN export.
Abstract. The NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission was conducted in two 3-week deployments based in Alaska (April 2008) and western Canada (June–July 2008). Its goal was to better understand the factors driving current changes in Arctic atmospheric composition and climate, including (1) influx of mid-latitude pollution, (2) boreal forest fires, (3) aerosol radiative forcing, and (4) chemical processes. The June–July deployment was preceded by one week of flights over California (ARCTAS-CARB) focused on (1) improving state emission inventories for greenhouse gases and aerosols, (2) providing observations to test and improve models of ozone and aerosol pollution. ARCTAS involved three aircraft: a DC-8 with a detailed chemical payload, a P-3 with an extensive aerosol and radiometric payload, and a B-200 with aerosol remote sensing instrumentation. The aircraft data augmented satellite observations of Arctic atmospheric composition, in particular from the NASA A-Train. The spring phase (ARCTAS-A) revealed pervasive Asian pollution throughout the Arctic as well as significant European pollution below 2 km. Unusually large Siberian fires in April 2008 caused high concentrations of carbonaceous aerosols and also affected ozone. Satellite observations of BrO column hotspots were found not to be related to Arctic boundary layer events but instead to tropopause depressions, suggesting the presence of elevated inorganic bromine (5–10 pptv) in the lower stratosphere. Fresh fire plumes from Canada and California sampled during the summer phase (ARCTAS-B) indicated low NOx emission factors from the fires, rapid conversion of NOx to PAN, no significant secondary aerosol production, and no significant ozone enhancements except when mixed with urban pollution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.