Abstract-This article is a reaction to recent publications on rulebased modeling using fuzzy set theory and fuzzy logic. The interest in fuzzy systems has recently shifted from the seminal ideas about complexity reduction toward data-driven construction of fuzzy systems. Many algorithms have been introduced that aim at numerical approximation of functions by rules, but pay little attention to the interpretability of the resulting rule base. We show that fuzzy rule-based models acquired from measurements can be both accurate and transparent by using a low number of rules. The rules are generated by product-space clustering and describe the system in terms of the characteristic local behavior of the system in regions identified by the clustering algorithm. The fuzzy transition between rules makes it possible to achieve precision along with a good qualitative description in linguistic terms. The latter is useful for expert evaluation, rule-base maintenance, operator training, control systems design, user interfacing, etc. We demonstrate the approach on a modeling problem from a recently published article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.