Mathematical modeling of complex electrical systems, has led us to linear mathematical models of higher order. Consequently, it is difficult to analyse and to design a control strategy of these systems. The order reduction is an important and effective tool to facilitate the handling and designing of a control strategy. In this paper we present, firstly, a reduction method which is based on the Krylov subspace and Lyapunov techniques, that we call Lyapunov-Global-Lanczos. This method minimizes the H∞ norm error, absolute error and preserves the stability of the reduced system. It also provides a better reduced system of order 1, with closer behaviour to the original system. This first order system is used to design PI (Proportional-Integral) controller. Secondly, we implement an adaptive digital PI controller in a microcontroller. It calculates the PI parameters in real time, referring to the error between the desired and measured outputs and the initial values of PI controller, that were determined from the first order system. Two simulation examples and a real time experimentation are presented to show the effectiveness of the proposed algorithms.
We propose an adaptive model reduction algorithm for computing a reduced-order model of dynamical multi-input and multi-output (MIMO) linear time independent (LTI) dynamical systems. The process is based on multipoint moment matching. Moreover, we develop new simple Lanczos-like equations for the rational block case, and we use them to derive simple residual error expressions. An adaptive method for choosing the interpolation points is also proposed. Finally, some numerical experiments are reported to show the effectiveness of the new adaptive modified rational block Lanczos (AMRBL) process when applied to stable linear LTI dynamical systems.
Summary
In the present paper, we describe an adaptive modified rational global Lanczos algorithm for model‐order reduction problems using multipoint moment matching‐based methods. The major problem of these methods is the selection of some interpolation points. We first propose a modified rational global Lanczos process and then we derive Lanczos‐like equations for the global case. Next, we propose adaptive techniques for choosing the interpolation points. Second‐order dynamical systems are also considered in this paper, and the adaptive modified rational global Lanczos algorithm is applied to an equivalent state space model. Finally, some numerical examples will be given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.