The effects of the peptide polycations salmon protamine (M(r) = 4332, z = +21) and poly-L-lysine (M(r) approximately equal to 100,000, z approximately equal to +775) on ion channels formed by synthetic alamethicin Alm-F30 (one negative charge), natural Alm-F50 (neutral) and phosphorylated Alm-F50 (two negative charges) reconstituted in planar lipid bilayers have been studied at the single channel level. It was observed that both polycations in micromolar concentrations transiently block ion permeation through the channels formed by each alamethicin analogue, although in case of the neutral Alm-F50 to a significantly lesser extent. Poly-L-lysine showed to be more effective than protamine in blocking these channels. If either polycation is present in the cis-compartment, blockade occurs only at cis positive membrane voltages. At constant polycation concentration, dwell times in the blocked state increase when salt concentration is lowered, and decrease at acidic pH with an apparent pK of 4.8. Mean lifetime of blockade events shortens when membrane voltage is increased, which suggests that both polycations may permeate through the oligomeric alamethicin channels if conductance levels are > 2. We suggest that blockade is caused by electrostatic binding of a single polycation molecule to the C-terminal channel mouth; in case of Alm-F30, Glu18 has to be considered as the putative binding site. Our results provide further evidence for the barrel-stave model and a parallel orientation of dipole monomers in the channel aggregate, the C-termini facing the membrane side with the more positive membrane potential.
Activities of four enzymes of the glycolytic pathway, hexokinase, glyceraldehyde 3-phosphate dehydrogenase, pyruvate kinase and lactate dehydrogenase, were determined in a vesicular brush-border preparation from rabbit kidneys. The specific activities of the enzymes were decreased several-hundredfold in the brush-border preparation compared with a kidney homogenate, but the enzymes were not totally absent. Density-gradient centrifugation of the brush-border preparation yielded brush border of even higher purity and also a characteristic pattern of distribution for each of the contaminating intracellular membranes. The presence of hexokinase in the brush-border preparation could be traced to contaminating mitochondria, and that of glyceraldehyde 3-phosphate dehydrogenase, pyruvate kinase and lactate dehydrogenase to contaminating vesicles derived from the endoplasmic reticulum. The brush-border vesicles contained some ATP. An intravesicular concentration of 0.1mm was estimated, indicating that the vesicles had retained at least a part of their original content. Experiments in which fluorescein isothiocyanate-dextran (mol.wt. 20000) was present during cell lysis revealed that much, but not all, of the brush-border contents had been exchanged with the medium. The complete absence of glycolytic enzymes from brush-border vesicles, which had retained part of their original content, indicates that the brush border does not contain glycolytic enzymes in vivo and can be thought of as a compartment of its own, somehow separated from the cytoplasm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.