SummaryBackgroundIntradermal MVA85A, a candidate vaccine against tuberculosis, induces high amounts of Ag85A-specific CD4 T cells in adults who have already received the BCG vaccine, but aerosol delivery of this vaccine might offer immunological and logistical advantages. We did a phase 1 double-blind trial to compare the safety and immunogenicity of aerosol-administered and intradermally administered MVA85AMethodsIn this phase 1, double-blind, proof-of-concept trial, 24 eligible BCG-vaccinated healthy UK adults were randomly allocated (1:1) by sequentially numbered, sealed, opaque envelopes into two groups: aerosol MVA85A and intradermal saline placebo or intradermal MVA85A and aerosol saline placebo. Participants, the bronchoscopist, and immunologists were masked to treatment assignment. The primary outcome was safety, assessed by the frequency and severity of vaccine-related local and systemic adverse events. The secondary outcome was immunogenicity assessed with laboratory markers of cell-mediated immunity in blood and bronchoalveolar lavage samples. Safety and immunogenicity were assessed for 24 weeks after vaccination. Immunogenicity to both insert Ag85A and vector modified vaccinia virus Ankara (MVA) was assessed by ex-vivo interferon-γ ELISpot and serum ELISAs. Since all participants were randomised and vaccinated according to protocol, our analyses were per protocol. This trial is registered with ClinicalTrials.gov, number NCT01497769.FindingsBoth administration routes were well tolerated and immunogenic. Respiratory adverse events were rare and mild. Intradermal MVA85A was associated with expected mild local injection-site reactions. Systemic adverse events did not differ significantly between the two groups. Three participants in each group had no vaccine-related systemic adverse events; fatigue (11/24 [46%]) and headache (10/24 [42%]) were the most frequently reported symptoms. Ag85A-specific systemic responses were similar across groups. Ag85A-specific CD4 T cells were detected in bronchoalveolar lavage cells from both groups and responses were higher in the aerosol group than in the intradermal group. MVA-specific cellular responses were detected in both groups, whereas serum antibodies to MVA were only detectable after intradermal administration of the vaccine.InterpretationFurther clinical trials assessing the aerosol route of vaccine delivery are merited for tuberculosis and other respiratory pathogens.FundingThe Wellcome Trust and Oxford Radcliffe Hospitals Biomedical Research Centre.
The SARS-CoV-2 can lead to severe illness with COVID-19. Outcomes of patients requiring mechanical ventilation are poor. Awake proning in COVID-19 improves oxygenation, but on data clinical outcomes is limited. This single-centre retrospective study aimed to assess whether successful awake proning of patients with COVID-19, requiring respiratory support (continuous positive airways pressure (CPAP) or high-flow nasal oxygen (HFNO)) on a respiratory high-dependency unit (HDU), is associated with improved outcomes. HDU care included awake proning by respiratory physiotherapists. Of 565 patients admitted with COVID-19, 71 (12.6%) were managed on the respiratory HDU, with 48 of these (67.6%) requiring respiratory support. Patients managed with CPAP alone 22/48 (45.8%) were significantly less likely to die than patients who required transfer onto HFNO 26/48 (54.2%): CPAP mortality 36.4%; HFNO mortality 69.2%, (p=0.023); however, multivariate analysis demonstrated that increasing age and the inability to awake prone were the only independent predictors of COVID-19 mortality. The mortality of patients with COVID-19 requiring respiratory support is considerable. Data from our cohort managed on HDU show that CPAP and awake proning are possible in a selected population of COVID-19, and may be useful. Further prospective studies are required.
Background There is an urgent need for an effective tuberculosis (TB) vaccine. Heterologous prime–boost regimens induce potent cellular immunity. MVA85A is a candidate TB vaccine. This phase I clinical trial was designed to evaluate whether alternating aerosol and intradermal vaccination routes would boost cellular immunity to the Mycobacterium tuberculosis antigen 85A (Ag85A). Methods and findings Between December 2013 and January 2016, 36 bacille Calmette-Guérin–vaccinated, healthy UK adults were randomised equally between 3 groups to receive 2 MVA85A vaccinations 1 month apart using either heterologous (Group 1, aerosol–intradermal; Group 2, intradermal–aerosol) or homologous (Group 3, intradermal–intradermal) immunisation. Bronchoscopy and bronchoalveolar lavage (BAL) were performed 7 days post-vaccination. Adverse events (AEs) and peripheral blood were collected for 6 months post-vaccination. The laboratory and bronchoscopy teams were blinded to treatment allocation. One participant was withdrawn and was replaced. Participants were aged 21–42 years, and 28/37 were female. In a per protocol analysis, aerosol delivery of MVA85A as a priming immunisation was well tolerated and highly immunogenic. Most AEs were mild local injection site reactions following intradermal vaccination. Transient systemic AEs occurred following vaccination by both routes and were most frequently mild. All respiratory AEs following primary aerosol MVA85A (Group 1) were mild. Boosting an intradermal MVA85A prime with an aerosolised MVA85A boost 1 month later (Group 2) resulted in transient moderate/severe respiratory and systemic AEs. There were no serious adverse events and no bronchoscopy-related complications. Only the intradermal–aerosol vaccination regimen (Group 2) resulted in modest, significant boosting of the cell-mediated immune response to Ag85A ( p = 0.027; 95% CI: 28 to 630 spot forming cells per 1 × 10 6 peripheral blood mononuclear cells). All 3 regimens induced systemic cellular immune responses to the modified vaccinia virus Ankara (MVA) vector. Serum antibodies to Ag85A and MVA were only induced after intradermal vaccination. Aerosolised MVA85A induced significantly higher levels of Ag85A lung mucosal CD4+ and CD8+ T cell cytokines compared to intradermal vaccination. Boosting with aerosol-inhaled MVA85A enhanced the intradermal primed responses in Group 2. The magnitude of BAL MVA-specific CD4+ T cell responses was lower than the Ag85A-specific responses. A limitation of the study is that while the intradermal–aerosol regimen induced the most potent cellular Ag85A immune responses, we did not boost the last 3 participants in this group because of the AE profile. Timing of bronchoscopies aimed to capture peak mucosal response; however, peak responses may have occurred outside of this time frame. Conclusions To our knowledge, this is the first human randomised clin...
The immunogenicity of the candidate tuberculosis (TB) vaccine MVA85A may be enhanced by aerosol delivery. Intradermal administration was shown to be safe in adults with latent TB infection (LTBI), but data are lacking for aerosol-delivered candidate TB vaccines in this population. We carried out a Phase I trial to evaluate the safety and immunogenicity of MVA85A delivered by aerosol in UK adults with LTBI (NCT02532036). Two volunteers were recruited, and the vaccine was well-tolerated with no safety concerns. Aerosolised vaccination with MVA85A induced mycobacterium- and vector-specific IFN-γ in blood and mycobacterium-specific Th1 cytokines in bronchoalveolar lavage. We identified several important barriers that could hamper recruitment into clinical trials in this patient population. The trial did not show any safety concerns in the aerosol delivery of a candidate viral-vectored TB vaccine to two UK adults with Mycobacterium tuberculosis (M.tb) infection. It also systemically and mucosally demonstrated inducible immune responses following aerosol vaccination. A further trial in a country with higher incidence of LTBI would confirm these findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.