The GJ 581 planetary system is already known to harbour three planets, including two super-Earth planets that straddle its habitable zone. We report the detection of an additional planet -GJ 581e -with a minimum mass of 1.9 M ⊕ . With a period of 3.15 days, it is the innermost planet of the system and has a ∼5% transit probability. We also correct our previous confusion about the orbital period of GJ 581d (the outermost planet) with a one-year alias, benefitting from an extended time span and many more measurements. The revised period is 66.8 days, and positions the semi-major axis inside the habitable zone of the low mass star. The dynamical stability of the 4-planet system imposes an upper bound on the orbital plane inclination. The planets cannot be more massive than approximately 1.6 times their minimum mass.
Context. In June 2010, we confirmed the existence of a giant planet in the disk of the young star β Pictoris located between 8 AU and 15 AU from the star. This young planet offers the rare opportunity to monitor a large fraction of the orbit using the imaging technique over a reasonably short timescale. It also offers the opportunity to study its atmospheric properties using spectroscopy and multi-band photometry, and possibly derive its dynamical mass by combining imaging with radial velocity data to set tight constraints on giant planet formation theories. Aims. We aim to measure the evolution of the planet's position relative to the star β Pictoris to determine the planetary orbital properties. Our ultimate goal is to relate both the planetary orbital configuration and physical properties to either the disk structure or the cometary activity observed for decades in the β Pictoris system. Methods. Using the NAOS-CONICA adaptive-optics instrument (NACO) at the Very Large Telescope (VLT), we obtained repeated follow-up images of the β Pictoris system in the K s and L filters at four new epochs in 2010 and 2011. Complementing these data with previous measurements, we conduct a homogeneous analysis, which covers more than eight yrs, to accurately monitor the β Pictoris b position relative to the star. We then carefully consider the various sources of uncertainties that may affect the orbital parameter determination. Results. On the basis of the evolution of the planet's relative position with time, we derive the best-fit orbital solutions for our measurements using two fitting methods, a least squares Levenberg-Marquardt algorithm and a Markov-chain Monte Carlo approach. More reliable results are found with the second approach as our measurements do not cover the complete planetary orbit, and are biased toward the most recent epochs since the planet recovery. The solutions favor a low-eccentricity orbit e < ∼ 0.17, with semi-major axis in the range 8-9 AU corresponding to orbital periods of 17-21 yrs. Our solutions favor a highly inclined solution with a peak around i = 88.5 ± 1.7 • , and a longitude of ascending node tightly constrained at Ω = −147.5 ± 1.5 • . These results indicate that the orbital plane of the planet is likely to be above the midplane of the main disk, and compatible with the warp component of the disk being tilted between 3.5 deg and 4.0 deg. This suggests that the planet plays a key role in the origin of the inner warped-disk morphology of the β Pic disk. Finally, these orbital parameters are consistent with the hypothesis that the planet is responsible for the transit-like event observed in November 1981, and also linked to the cometary activity observed in the β Pic system.
Context. AU Mic is a young M-type star surrounded by an edge-on optically thin debris disk that shares many common observational properties with the disk around β Pictoris. In particular, the scattered light surface brightness profile falls off as ∼r −5 outside 120 AU for β Pictoris and 35 AU for AU Mic. In both cases, the disk color rises as the distance increases beyond these reference radii. Aims. In this paper, we present the first comprehensive analysis of the AU Mic disk properties since the system was resolved by Kalas et al. (2004, Science, 303, 1990. We explore whether the dynamical model, which successfully reproduces the β Pictoris brightness profile (e.g., Augereau et al. 2001, A&A, 370, 447), could apply to AU Mic. Methods. We calculate the surface density profile of the AU Mic disk by performing the inversion of the near-IR and visible scattered light brightness profiles measured by Liu (2004, Science, 305, 1442 and Krist et al. (2005, AJ, 129, 1008, respectively. We discuss the grain properties by analysing the blue color of the disk in the visible (Krist et al. 2005) and by fitting the disk spectral energy distribution. Finally, we evaluate the radiation and wind forces on the grains. The impact of the recurrent X-ray and UV-flares on the dust dynamics is also discussed. Results. We show that irrespective of the mean scattering asymmetry factor of the grains, most of the emission arises from an asymmetric, collisionally-dominated region that peaks close to the surface brightness break around 35 AU. The elementary scatterers at visible wavelengths are found to be sub-micronic, but the inferred size distribution underestimates the number of large grains, resulting in sub-millimeter emissions that are too low compared to the observations. From our inversion procedure, we find that the Vto H-band scattering cross sections ratio increases outside 40 AU, in line with the observed color gradient of the disk. This behavior is expected if the grains have not been produced locally, but placed in orbits of high eccentricity by a size-dependent pressure force, resulting in a paucity of large grains beyond the outer edge of the parent bodies' disk. Because of the low luminosity of AU Mic, radiation pressure is inefficient to diffuse the smallest grains in the outer disk, even when the flares are taken into account. Conversely, we show that a standard, solar-like stellar wind generates a pressure force onto the dust particles that behaves much like a radiation pressure force. With an assumedṀ 3 × 10 2Ṁ , the wind pressure overcomes the radiation pressure, and this effect is enhanced by the stellar flares. This greatly contributes to populating the extended AU Mic debris disk and explains the similarity between the β Pictoris and AU Mic brightness profiles. In both cases, the color gradient beyond 120 AU for β Pictoris and 35 AU for AU Mic, is believed to be a direct consequence of the dust dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.