Human herpesvirus 6, HHV-6, commonly infects children, causing febrile illness and can cause more severe pathology, especially in an immune compromised setting. There are virulence distinctions between variants HHV-6A and B, with evidence for increased severity and neurotropism for HHV-6A. While HHV-6B is the predominant infant infection in USA, Europe and Japan, HHV-6A appears rare. Here HHV-6 prevalence, loads and variant genotypes, in asymptomatic compared to symptomatic infants were investigated from an African region with endemic HIV-1/AIDS. DNA was extracted from blood or sera from asymptomatic infants at 6 and 18 months age in a population-based micronutrient study, and from symptomatic infants hospitalised for febrile disease. DNA was screened by qualitative and quantitative real-time PCR, then genotyped by sequencing at variable loci, U46 (gN) and U47 (gO). HIV-1 serostatus of infants and mothers were also determined. HHV-6 DNA prevalence rose from 15% to 22% (80/371) by 18 months. At 6 months, infants born to HIV-1 positive mothers had lower HHV-6 prevalence (11%, 6/53), but higher HCMV prevalence (25%, 17/67). HHV-6 positive febrile hospitalized infants had higher HIV-1, 57% (4/7), compared to asymptomatic infants, 3% (2/74). HHV-6A was detected exclusively in 86% (48/56) of asymptomatic HHV-6 positive samples genotyped. Co-infections with both strain variants were linked with higher viral loads and found in 13% (7/56) asymptomatic infants and 43% (3/7) HIV-1 positive febrile infants. Overall, the results show HHV-6A as the predominant variant significantly associated with viremic infant-infections in this African population, distinct from other global cohorts, suggesting emergent infections elsewhere.
Human cytomegalovirus, HCMV, was analysed using real-time quantitative PCR in symptomatic or asymptomatic pediatric cohorts from HIV-1 infected, exposed (HIV-1+ mothers), or uninfected groups in Zambia, an HIV-1/AIDS endemic region of Africa. HCMV infections were identified in 94% samples from HIV-1+ respiratory pediatric mortalities, 50% with high DNA loads of 10(3)-10(8) copies/10(6) cells. In comparison, HCMV viremia with high DNA loads, indicative of acute infections, were in 10% hospitalised febrile infants, with 50% HIV-1+. Whereas high sera loads were in 1% of asymptomatic infants, with 2% HIV-1+, and higher levels in both HIV-1 infected or exposed, but negative infants. All 8 linked-hypervariable glycoprotein gN-gO genotypes were shown, including identification of a new gN4d group with gO5 linkage (previously only Merlin reference strain), and samples with multiple infections. Overall, this shows global genotypes in Africa (unlike some herpesviruses) and acute pediatric HCMV infections in both HIV-1+ plus exposed, but uninfected infants, an emerging group.
Kaposi's sarcoma-associated herpesvirus (KSHV or HHV-8) has been associated with several neoplasias, including childhood endemic Kaposi's sarcoma (KS). It is possible that strain genotypes could contribute to the differences in regional presentation (mainly sub-Saharan Africa), childhood infection, lack of male sex bias, distinct disseminated forms and rapid fatality observed for childhood endemic KS. Early studies, at the advent of the HIV/AIDS epidemic, identified only the K1-A5 genotype in childhood KS biopsies as well as blood of a few HIV positive and negative febrile infants in Zambia, a highly endemic region. This current enlarged study analyses blood infections of 200 hospitalized infants (6–34 months age) with symptoms of fever as well as upper respiratory tract infection, diarrhoea, rash or rhinitis. KSHV and HIV viraemia and were prevalent in this group, 22% and 39%, respectively. Multiple markers at both variable ends of the genome (K1, K12, and K14.1/K15) were examined, showing diverse previously adult-linked genotypes (K1 A2, A5, B, C3, D, with K12 B1 and B2 plus K14.1/K15 P or M) detected in both HIV positive and negative infants, demonstrating little restriction on KSHV genotypes for infant/childhood transmission in a childhood endemic KS endemic region. This supports the interpretation that the acquisition of childhood KSHV infections and subsequent development of KS are due to additional co-factors. J. Med. Virol. 79:1555–1561, 2007. © 2007 Wiley-Liss, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.