Morphological instabilities in periodic patterns occurring both in precipitation and crystallization processes (Liesegang rings and crystal zoning) are investigated and compared with similar patterns in geological samples (zebra rocks and mud bands in snow sediments). In classical Liesegang systems, undisturbed parallel or concentric precipitation bands are emanated from even or concentric diffusion sources in homogeneous diffusion matrices of gelatine or other gels. In the case of superposing diffusion sources, sources with undulatory curvatures or local diffusion barriers there may occur several types of instabilities within the sequence of regular patterns: (a) gaps within the bands forming radial alleys free of precipitate, (b) transition from broken bands to speckled patterns and (c) apparent branching of bands linked together by so-called anastomoses. Calculations with a competitive particle growth (CPG) model show that lateral instabilities in Liesegang bands (gaps and radial alleys of gaps) are the result of Ostwald ripening effects taking place after precipitation. Apparent branching of bands or formation of anastomoses can be simulated with a prenucleation model according to Ostwald's supersaturation theory. Similar irregularities can be observed in zebra rocks (e.g. banded siderite) whose bandings are commonly explained by sequential sedimentation processes. A very different mechanism is assumed to be responsible for the origin of mud bands in snow sediments. An initially homogeneous distribution of intrinsic mud in snow sediments can be arranged into parallel bands according to a crystal zoning mechanism which is based on repeated thawing and freezing of the snow sediment due to the daily alternation of sun and darkness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.