The aim of this study was to evaluate the efficacy and safety of our novel Innsbruck Bioartificial Liver (IBAL; US patent no. 10/641275), which contains aggregates of porcine hepatocytes grown under simulated microgravity, in a porcine model of fulminant hepatic failure (FHF). FHF was induced by a combination of 75-80% liver resection and ischemia of the remnant segments for 60 min in 12 pigs. Two experimental groups were studied: the control group (n = 5) received standard intensive care and the study group (n = 5) received IBAL treatment. The survival of pigs with FHF was significantly prolonged by about 150% with IBAL treatment as compared to controls (controls: 20.4 +/- 2.8 h, IBAL: 51.0 +/- 2.2 h; P = 0.00184). In addition, intracranial pressure, blood ammonia, lactate, aspartate aminotransferase, and alkaline phosphatase levels were lower in the IBAL group than in controls, indicating metabolic activity of porcine hepatocytes in the bioreactor. No adverse effects were observed.
An extracorporeal bioartificial liver device could provide vital support to patients suffering from acute liver failure. We designed a novel, customized bioreactor for use as a bioartificial liver (patent pending). The Innsbruck Bioartificial Liver (IBAL) contains aggregates of porcine hepatocytes grown under simulated microgravity. The culture vessel rotates around its longitudinal axis and is perfused by two independent circuits. The circuit responsible for exchange of plasma components with the patient consists of a dialysis tube winding spirally around the internal wall of the culture vessel. IBAL was evaluated in vitro. Viability tests showed sufficient viability of hepatocytes for up to 10 days. Cytologic examination of samples from the bioreactor showed liver cell aggregates. These were also examined by electron microscopy. A number of biochemical parameters were analyzed. In conclusion, cell culture is possible for at least 10 days in the IBAL system, organoid hepatocyte aggregates are formed and synthetic activity of the hepatocytes was demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.