Wheat and soybean diets supplemented with either tallow or sunflower oil (SFO) were fed to broiler chicks. Variables examined included performance, incidence of sudden death syndrome (SDS), and cardiac sarcoplasmic reticular (SR) calcium transport. The phospholipid content of heart tissues was also determined. Birds fed the SFO diet gained significantly (P < .05) more weight over the first 21 days of age and had a significantly better feed:gain ratio (P < .01). The incidence of SDS mortality up to 39 days of age was also lower (P < .05) for SFO-fed birds than for those fed the tallow diet. Calcium (45Ca2+) uptake and calcium-magnesium 5'-adenosinetriphosphatase (Ca2+ + Mg(2+)-ATPase) activity in cardiac SR vesicles did not differ due to diet (P > .05). However, compared with similar weight pen-mates showing no disease signs, SDS birds had depressed 45Ca2+ uptake (P < .01) and Ca2+ + Mg(2+)-ATPase (P < .05) of cardiac SR vesicles. The phosphatidylcholine concentration in the cell membranes of heart tissue of tallow-fed birds was significantly higher (P < .05) than in SFO-fed chicks. No differences were seen in other phospholipid constituents. The SDS birds, however, had significantly (P < .05) lower phosphatidylethanolamine plus phosphatidylglycerol, sphingomyelin, and total phospholipid concentrations in the heart tissues than the pen-mate controls. The results support the hypotheses that SDS in broilers is a cardiac dysfunction associated with defective cardiac SR membrane function and that dietary fat type is implicated with the syndrome.
The secretion of Cl(-) across distal colonic crypt cells provides the driving force for the movement of fluid into the luminal space. 17beta-Estradiol (E2) produces a rapid and sustained reduction in secretion in females, which is dependent on the novel protein kinase C delta (PKC delta) isozyme and PKA isoform I targeting of KCNQ1 channels. This sexual dimorphism in the E2 response is associated with a higher expression level of PKC delta in female compared with the male tissue. The present study revealed the antisecretory response is regulated throughout the female reproductive (estrous) cycle and is primed by genomic regulation of the kinases. E2 (1-10 nm) decreased cAMP-dependent secretion in colonic epithelia during the estrus, metestrus, and diestrus stages. A weak inhibition of secretion was demonstrated in the proestrus stage. The expression levels of PKC delta and PKA fluctuated throughout the estrous cycle and correlated with the potency of the antisecretory effect of E2. The expression of PKC delta and PKA were up-regulated by estrogen at a transcriptional level via a PKC delta-MAPK-cAMP response element-binding protein-regulated pathway indicating a genomic priming of the antisecretory response. PK Cdelta was activated by the membrane-impermeant E2-BSA, and this response was inhibited by the estrogen receptor antagonist ICI 182,780. The 66-kDa estrogen receptor-alpha isoform was present at the plasma membrane of female colonic crypt cells with a lower abundance found in male colonic crypts. The study demonstrates estrogen regulation of intestinal secretion both at a rapid and transcriptional level, demonstrating an interdependent relationship between both nongenomic and genomic hormone responses.
The characteristics of muscarinic cholinergic-induced phospholipase D (PLD) activation, and the involvement of the enzyme in the release of arachidonic acid were examined in rat submandibular acinar cells. Carbachol produced a dose-related activation of PLD to around fivefold control values at 100 microM agonist concentration. This was associated with the appearance of free choline, phosphatidic acid and arachidonic acid, indicating that the PLD substrate was phosphatidylcholine. The response to carbachol was inhibited by 60% by U73122, a blocker of a phospholipase C (PLC) specific to phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], suggesting that the cleavage of phosphatidylcholine by PLD was, at least in part, secondary to agonist-coupled hydrolysis of PtdIns(4,5)P2 by PLC. Consistent with this, PLD was also activated to levels comparable to those induced by carbachol, by the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), and the Ca2+ mobilizer, thapsigargin, two agents that respectively mimic the activation of protein kinase C (PKC) by diacylglycerol and the elevation of cytosolic Ca2+ by inositol 1,4,5-triphosphate [Ins(1,4,5)P3] in the phosphoinositide effect. The cell-permeant Ca2+ chelator 1,2-bis-(O-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid, tetraacetoxymethyl ester (BAPTA/AM) abolished the thapsigargin-induced activation of PLD and inhibited the responses of PLD to carbachol and TPA by 60%. The PKC inhibitor, Ro-31-8220, also inhibited the activation of PLD by carbacol and TPA to a level of approximately double control values, but had no effect on the thapsigargin-induced elevation of PLD. A role for both the PKC-associated and Ca(2+)-mobilizing arms of the PtdIns(4,5)P2-PLC pathway in PLD regulation is thus suggested. Pretreatment of cells with the phosphatidate phosphohydrolase blocker, propranolol, significantly enhanced the carbachol-induced elevation of phosphatidic acid, but decreased agonist-stimulated production of diacylglycerol and arachidonic acid, indicating that phosphatidlycholine was the likely source of arachidonic acid. We therefore propose that, in submandibular mucous acinar cells, muscarinic activation of the PtdIns(4,5)P2-PLC pathway regulates phosphatidylcholine-specific PLD through both the PKC- and Ca(2+)-mobilizing arms of the phosphoinositide response, and that diacylglycerol, derived from phosphatidylcholine via phosphatidic acid, is a source of free arachidonic acid.
Phosphoinositide kinases were characterized in membrane extracts of rat submandibular gland cells. Both phosphatidylinositol (PI) 4-kinase and phosphatidylinositol-4-phosphate (PI(4)P) 5-kinase phosphorylated endogenous substrates in reactions that were linear for up to 5 min, were activated by Mg2+ and showed maximal activity around neutral pH. PI 4-kinase was stimulated by Triton X-100 at an optimal concentration of 0.22%, but the detergent had an inhibitory effect on PI(4)P 5-kinase. Arachidonic acid (AA), at concentrations greater than 100 microM, inhibited the activity of both enzymes in a dose-dependent manner. The inhibitory effect was replicated by other unsaturated fatty acids, but not by a saturated fatty acid of the sn-20 series. The nature of AA inhibition of the kinases was examined in enzyme kinetic studies with exogenous phosphoinositide and adenosine 5'-triphosphate (ATP) substrates. Lineweaver-Burk plots of PI 4-kinase activity showed that AA had no effect on the apparent Km for either PI or ATP, but that the fatty acid significantly reduced Vmax (PI) from 331 to 177 pmol.mg-1.min-1 and Vmax (ATP) from 173 to 59 pmol.mg-1.min-1. This inhibitory action was consistent for PI(4)P 5-kinase kinetics, where again, AA did not alter apparent Km values, but lowered Vmax for both PI(4)P and ATP by around 50%. Since the combination of a reduced Vmax and an unchanged Km value indicates noncompetitive enzyme inhibition, it is proposed that AA regulates phosphoinositide cycle activity in submandibular gland cells by acting as a noncompetitive inhibitor of PI 4-kinase and PI(4)P 5-kinase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.