Abstract.A new all-sky Fabry-Perot Interferometer called the Scanning Doppler Imager (SCANDI) was built and installed at Longyearbyen in December 2006. Observations have been made of the Doppler shifts and Doppler broadening of the 630 nm airglow and aurora, from which upper thermospheric winds and temperatures are calculated. SCANDI allows measurements over a field-of-view (FOV) with a horizontal radius of nearly 600 km for observations at an altitude of 250 km using a time resolution of 8 min. The instrument provides the ability to observe thermospheric spatial structure within a FOV which overlaps that of the EISCAT Svalbard radar and CUTLASS SuperDARN radars. Coordinating with these instruments provides an important opportunity for studying ion-neutral coupling. The all-sky image is divided into several sectors to provide a horizontal spatial resolution of between 100-300 km. This is a powerful extension in observational capability but requires careful calibration and data analysis, as described here. Two observation modes were used: a fixed and a scanning etalon gap. SCANDI results are corroborated using the Longyearbyen single look direction FPI, and ESR measurements of the ion temperatures. The data show thermospheric temperature gradients of a few Kelvins per kilometre, and a great deal of meso-scale variability on spatial scales of several tens of kilometres.
Abstract.First results are presented from a Scanning Doppler Imager (SCANDI) installed at the Nordlysstasjonen optical observatory near Longyearbyen, Svalbard (78.2 • N, 15.8 • E). Observations of the atomic oxygen 630 nm red line emission, originating in the upper thermosphere at around 250 km, have been used to determine neutral winds and temperatures from multiple zones within an extended spatial field. The instrument utilises all-sky optics to achieve multiple simultaneous measurements, compared to the standard Fabry-Perot Interferometer (FPI) procedure of separate lineof-sight samples within a sequence of narrow angle look directions. SCANDI is colocated with such a standard FPI and comparison of neutral wind velocities between the instruments on the night of 15 March 2007 has revealed detailed and consistent structure in the wind field. Southward meridional wind enhancements of several hundred m/s are observed simultaneously with both instruments, revealing structure on scales not currently considered in thermospheric general circulation models (GCMs). The data from this night also demonstrate the influence of discrete auroral events on thermospheric behaviour. High intensities observed by SCANDI in the presence of auroral arcs coincide with a drop in measured neutral temperatures. This is interpreted as a result of the effective altitude of the 630 nm emission being lowered under conditions of soft auroral precipitation. The optical instruments as a consequence sample a region of lower temperature. This effect has been observed previously with lower thermospheric atomic oxygen emissions at 557.7 nm. The EISCAT Svalbard Radar (ESR) provides ion temperatures and electron densities for the night which confirm the influence of precipitation and heating during the auroral events. The minima of ion temperatures through the pre-midnight period provide a good match to the neutral temCorrespondence to: E. M. Griffin (eoghan@apl.ucl.ac.uk) peratures measured with SCANDI, and to the colocated FPI temperatures.
We report the first observations of simultaneous high‐latitude interhemispheric F region neutral wind fields by combining the 630 nm optical measurements from two scanning Doppler imagers (SDIs) and three Fabry‐Perot interferometers (FPIs) for a period exceeding 5 h. From the Southern Hemisphere, a SDI at Mawson and a FPI at Davis, both in Antarctica, are geomagnetically mapped onto the Northern Hemisphere. These data are combined in the Northern Hemisphere with a SDI at Longyearbyen, Svalbard, and two FPIs near Kiruna in Sweden and Sodankyla in Finland. Geomagnetic conditions were moderate (Kp = 3−−3+) and steady although the interplanetary magnetic field Bz component did change polarity several times. There is good agreement between the conjugate 630 nm optical intensities and wind vectors where the two SDIs' fields of view overlap. All wind field vectors are overlaid onto the northern Super Dual Auroral Radar Network ion convection contours. Qualitatively, the agreement between neutral and ion flow is remarkably good throughout the study interval, even down to mesoscale spatial size.
Abstract. The response of thermospheric neutral parameters such as winds and temperatures to rapid changes in geophysical conditions has usually been considered to be relatively slow, on the order of hours, and steady, representing an integration of more rapid ionospheric changes. Quantifying the relevant ion-neutral coupling has proved difficult due to a lack of relevant laboratory data for the most important collisions, namely between neutral atomic oxygen and its first ion. As a result the representation of ion-neutral coupling in numerical models of the upper atmosphere has often produced poor comparison to experimental data. Using a unique combination of spatially extended ion and neutral thermospheric parameters we show that the neutral response can be very rapid, within 15 min, to imposed forcing via ion-neutral coupling. The array of complementary instrumentation measuring the thermosphere above Svalbard in the Northern Hemisphere allows detailed study of the causes and effects from both the ion and neutral perspectives. The implications for development and testing of the thermospheric numerical models is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.