In the present investigation, a serial solution of the inverse heat-conduction problem (IHCP) is extended for Al-3 pct Cu-4.5 pct Si alloy square bars and rectangular plates cast in metal molds. The metal/mold interface was divided into three segments, viz., the half face, the quarter face, and the corner. The heatflux transients during casting solidification were then estimated at these segments. Three configurations were considered, viz., (1) one boundary segment for the whole length on the interface, (2) two boundary segments delineating two heat-flux components, and (3) three boundary segments leading to three heat-flux components. In order to identify the most acceptable spatial distribution of interface heat flux, two types of analyses were performed on the results of the IHCP, viz., convergence of absolute error in the computed and the measured temperatures at the sensor locations and total heat energy transferred across the boundary from the casting to the mold. The error convergence at the thermocouple locations was more or less identical for all the three cases in both bars and plates. However, the total heat absorbed by the mold, in the case of the one-segment model in bars and the three-segment model in plates, was found to be a minimum. This indicated that the interface heat flux did not show any spatial distribution in the case of bars, while a distinct spatial distribution could be identified in the case of plates. The individual heat fluxes at the different interface segments for the plate casting showed a peak within 3 to 3.5 seconds of pouring, after which it reduced and reached stable values in about 200 seconds. The maximum heat flux occurred at the corner segment. The analysis of heat-flux gradients showed that the air gap initiated at the corner and spread toward the center.
Increasing energy consumption, high cost and exhaustible nature of fossil fuels and their impacts on environment have increased interest in production of hydrogen from thermochemical cycles by harvesting energy from renewable energy sources in the present scenario. By using thermochemical cycles the large quantity of hydrogen production is possible. The main thermochemical cycles out of all reference cycles are Cu-Cl, Zn-ZnO, S-I, Ca-Br and Fe-Cl.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.