Cadmium (Cd) is one of the most toxic heavy metals and a non‐essential element to all organisms, including plants; however, the genes involved in Cd resistance in plants remain poorly characterised. To identify Cd resistance genes in rice, we screened a rice cDNA expression library treated with CdCl2 using a yeast (Saccharomyces cerevisiae) mutant ycf1 strain (DTY167) and isolated two rice phytochelatin synthases (OsPCS5 and OsPCS15). The genes were strongly induced by Cd treatment and conferred increased resistance to Cd when expressed in the ycf1 mutant strain. In addition, the Cd concentration was twofold higher in yeast expressing OsPCS5 and OsPCS15 than in vector‐transformed yeast, and OsPCS5 and OsPCS15 localised in the cytoplasm. Arabidopsis thaliana plants overexpressing OsPCS5/‐15 paradoxically exhibited increased sensitivity to Cd, suggesting that overexpression of OsPCS5/‐15 resulted in toxicity due to excess phytochelatin production in A. thaliana. These data indicate that OsPCS5 and OsPCS15 are involved in Cd tolerance, which may be related to the relative abundances of phytochelatins synthesised by these phytochelatin synthases.
The ethylene-responsive element binding factor (ERF) family is a large family of transcription factors involved in plant development and environmental stress responses. We previously reported the identification of 29 putative substrates of Mitogen-activated Protein Kinase3 (AtMPK3), AtMPK4 and AtMPK6, based on a solid-phase phosphorylation screening using a lambda phage expression library in Arabidopsis thaliana. • In this study, a putative MPK substrate, AtERF72 (At3g16770), was strongly phosphorylated by AtMPK6 on the serine residue at position 151 (Ser151). AtERF72 binds to the GCC box (AGCCGCC) in the promoters of several pathogenesis-related (PR) genes and activates their transcription. We also show that the DNA-binding activity of AtERF72 is enhanced upon phosphorylation by AtMPK6 in vitro. • In addition, transient co-expression experiments in Arabidopsis protoplasts revealed that effector constructs expressing a mutant variant of AtERF72, AtERF72 S151D (carrying a Ser to aspartic acid [Asp] substitution at amino acid position 151) showed higher expression of the b-glucuronidase (GUS) reporter gene driven by the GCC box element than effector constructs expressing the wild-type AtERF72. Furthermore, yeast two-hybrid assays revealed that the interaction between AtERF72 S151D and TGA4/OBF4 was stronger than that between wild-type AtERF72 and TGA4/OBF4. • Since AtERF72 S151D is equivalent to AtERF72 phosphorylated by AtMPK6 at Ser151, these results suggest that the phosphorylation of AtERF72 by AtMPK6 triggers an event of transcriptional regulation from defence signalling in Arabidopsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.