Superoxide radical ions (O2-) produced by the radiolytic reduction of oxygenated formate solutions and by the xanthine oxidase-catalysed oxidation of xanthine were shown to oxidize the haem groups in oxyhaemoglobin and reduce those in methaemoglobin as in reactions (1) and (2): (see articles) Reaction (1) is suppressed by reaction (8) when [O2-]exceeds 10 muM, but consumes all the O2- generated in oxyhaemoglobin solutions when [oxyhaemoglobin] greater than 160 muM and [O2-]less than 1 nM at pH 7. The yield of reaction (2) is also maximal in methaemoglobin solutions under similar conditions, but less than one haem group is reduced per O2- radical. From studies of (a) the yield of reactions (1) and (2) at variable [haemoglobin] and rates of production of O2-, (b) their suppression by superoxide dismutase, and (c) equilibria observed with mixtures of oxyhaemoglobin and methaemoglobin, it is shown that k1/k2=0.7 +/- 0.2 and k1 = (4 +/- 1) X 10(3) M-1-S-1 At pH7, and k1 and k2 decrease with increasing pH. Concentrations and rate constants are expressed in terms of haem-group concentrations. Concentrations of superoxide dismutase observed in normal erythrocytes are sufficient to suppress reactions (1) and (2), and hence prevent the formation of excessive methaemoglobin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.