Chronic myeloproliferative disorders (MPD) are clonal diseases of the pluripotent hematopoietic stem cell frequently associated with myelofibrosis (MF). There is only indirect evidence indicating that the increased deposition of collagen in bone marrow matrix is a secondary phenomenon. A liquid culture system for cloning and growing bone marrow fibroblasts has permitted us to approach more directly the understanding of the pathogenesis of myelofibrosis by comparing the biophysical, growth, and functional characteristics of fibroblasts from normals, MPD patients without MF, and those with MF. In patients with MF, marrow fibroblast colony (CFU-F) formation could not be studied; fibroblasts were grown from marrow explants. CFU-E from normals and MPD patients exhibited similar cell density distribution and similar cell sedimentation rates. These similarities contrasted sharply with the differences seen when the erythroid and granulocyte-macrophage progenitors were studied by the same methods. There was a marked light density shift and a rapidly sedimenting shift of MPD hematopoietic colony-forming cells. Marrow fibroblasts from MPD patients with and without MF displayed the same in vitro growth characteristics as fibroblasts from normals. Both types of fibroblasts exhibited anchorage and serum dependence, and contact inhibition of growth. Marrow fibroblasts were also characterized for the presence and distribution of fibronectin and collagen types by immunofluorescent staining using monospecific antibodies. Extracellular matrix, membrane-, and cytoplasm- associated fibronectin, type I, type III, and type V collagen showed a similar staining pattern in both normal and myelofibrotic marrow fibroblasts. Plasminogen-dependent fibrinolytic activity elicited from normal and myelofibrotic marrow fibroblasts were equivalent. Chromosomal analysis of hematopoietic cells and marrow fibroblasts from Philadelphia chromosome positive chronic myelocytic leukemia patients with and without MF showed that the Philadelphia chromosome was present only in hematopoietic cells. The results of these studies taken together demonstrate that bone marrow collagen-producing cells from MPD patients with and without MF behave in vitro as do those from normals. These findings support the hypothesis that that the marrow fibrosis observed in patients with MPD results from a reactive process rather than from a primary disorder affecting the marrow collagen-producing cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.