The newly commissioned Orion laser system has been used to study dense plasmas created by a combination of short pulse laser heating and compression by laser driven shocks. Thus the plasma density was systematically varied between 1 and 10 g/cc by using aluminum samples buried in plastic foils or diamond sheets. The aluminum was heated to electron temperatures between 500 and 700 eV allowing the plasma conditions to be diagnosed by K-shell emission spectroscopy. The K-shell spectra show the effect of the ionization potential depression as a function of density. The data are compared to simulated spectra which account for the change in the ionization potential by the commonly used Stewart and Pyatt prescription and an alternative due to Ecker and Kröll suggested by recent x-ray free-electron laser experiments. The experimental data are in closer agreement with simulations using the model of Stewart and Pyatt.
We report the first direct measurements of total absorption of short laser pulses on solid targets in the ultrarelativistic regime. The data show an enhanced absorption at intensities above 10(20) W/cm(2), reaching 60% for near-normal incidence and 80%-90% for 45 degrees incidence. Two-dimensional particle-in-cell simulations demonstrate that such high absorption is consistent with both interaction with preplasma and hole boring by the intense laser pulse. A large redshift in the second harmonic indicates a surface recession velocity of 0.035c.
Measurements of the L -shell emission of highly charged gold ions were made under controlled laboratory conditions using the SuperEBIT electron beam ion trap, allowing detailed spectral observations of lines from Fe-like Au53+ through Ne-like Au69+ . Using atomic data from the Flexible Atomic Code, we have identified strong 3d_{52}-->2p_{32} emission features that can be used to diagnose the charge state distribution in high energy density plasmas, such as those found in the laser entrance hole of hot hohlraum radiation sources. We provide collisional-radiative calculations of the average ion charge Z as a function of temperature and density, which can be used to relate charge state distributions inferred from 3d_{52}-->2p_{32} emission features to plasma conditions, and investigate the effects of plasma density on calculated L -shell Au emission spectra.
The compact multipulse terawatt (COMET) laser facility at LLNL was used to irradiate Al-coated 2-50 microm Ti foils with approximately 10(19) W cm(-2) , 500 fs, 3-6 J laser pulses. Laser-plasma interactions on the front side of the target generate hot electrons with sufficient energy to excite inner-shell electrons in Ti, creating Kalpha emission which has been measured using a focusing spectrometer with spatial resolution aimed at the back surface of the targets. The spatial extent of the emission varies with target thickness. The high spectral resolution (lambda/Deltalambda approximately equal to 3800) is sufficient to measure broadening of the Kalpha emission feature due to the emergence of blueshifted satellites from ionized Ti in a heated region of the target. A self-consistent-field model is used to spectroscopically diagnose thermal electron temperatures up to 40 eV in the strongly coupled Ti plasmas.
We have measured the polarization of the 2p 3/2 → 1s 1/2 Lyman-␣ 1 x-ray line of hydrogenlike Ar 17+ and Fe 25+ at electron-impact energies ranging from 7 to 25 threshold units. The highly charged argon and iron ions were produced using the Lawrence Livermore National Laboratory SuperEBIT electron beam ion trap. A combination of two crystal spectrometers and a microcalorimeter were used to record the Lyman-␣ x-ray emission of Ar 17+ and Fe 25+ and to infer the polarization of the Lyman-␣ 1 line. Our results show a systematic discrepancy with the predictions of distorted-wave calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.