Global Navigation Satellite System (GNSS) is now being speedily expanded to our daily life, but the positioning precision still can hardly meet the demands of many applications, such as approaching landing system on airports. Due to the development of GNSS, triple-frequency signals are now available which can contribute to positioning precision. Positioning precision cannot be improved by triple-frequency carrier phases until cycle slips are detected and repaired. Traditional cycle slip detection and repair algorithms choose detection combinations with long wavelength, weak ionospheric delay and small combination noise separately. However, these three conditions cannot be satisfied simultaneously. In this paper, these three conditions are not considered separately. On the contrary, the eventual fixing probability of cycle slip is set as the optimal goal to determine the three detection combinations. The combined ionospheric delay and noise in cycles can be regarded as bias and variance respectively. The proposed algorithm has been tested on observations with simulated and real cycle slips. The results show that the proposed algorithm can detect and repair even single cycle slips in real time effectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.