Noncollagenous matrix proteins (NCPs) of dental hard tissues (dentin, cementum) are involved, both temporally and spatially, in the mineralization of their collagen matrices. Two of the NCPs thought to initiate mineral nucleation and control crystal growth in dentin, are dentin phosphoproteins (DPP) and dentin sialoprotein (DSP). Control of crystal growth would depend on the binding capacity of these two molecules, which may be related to the charge domains on the crystals and/or the phosphorylation of the protein. Phosphophoryn (a highly phosphorylated DPP) and DSP were isolated, purified, and characterized from the immature root apicies of human teeth. Dephosphorylation of phosphophoryn was carried out using bovine intestinal alkaline phosphatase. Enamel crystals were prepared from the maturation stage of developing rat incisor enamel. Protein-coated crystals were prepared for viewing in an atomic force microscope fluid cell using tapping mode. Desorption of the proteins was achieved using a phosphate buffer and surface roughness measurements were obtained from all specimens. Time-lapsed images of the crystals showed "nanospheres" of protein distributed along the crystals but only the phosphophoryn-coated crystals showed a distinctive banding pattern, which was still visible after the phosphate desorption experiments. The surface roughness measurements were statistically greater (P <0.01) when compared to the control for only the phosphophoryn-coated specimens. It is hypothesized that the phosphophoryn binding may be associated with charge arrays on the crystal surface and its phosphorylation. Also, based on its affinity for the crystalsurfaces, phosphophoryn seems the most likely candidate for controlling dentin crystal growth and morphology.
Trenchless technologies (TT), unlike open cut trenching, offer the potential to install, maintain and refurbish buried utilities without the need to close long stretches of carriageway. Recent studies indicate that carbon emissions associated with trenchless installations are far smaller, and trenchless installations are more sustainable, than trenching. Yet utility companies, and their contractors, routinely shun trenchless technologies due to the perceived risk of damaging previously undetected third party assets. Mapping the Underworld (MTU) seeks to create a multi-sensor tool, and a new philosophical approach to underground mapping, to mitigate such risks and facilitate the routine adoption of TT. The novel approach is now being developed through the proof of concept stage towards field trials and the results of these proving trials form the basis of this paper. Moreover such street works, like all construction, repair, renewal and maintenance projects, must be reviewed in terms of a sustainability assessment framework to explore their real costs and benefits to the society on behalf of which, as ultimate 'users' of the facilities, the works are being carried out. This paper seeks to integrate the findings of a highly multi-disciplinary technology-based project with a wider research programme on the context of effective and efficient working in the streets. The lessons drawn from this programme of research extend to all aspects of pipeline engineering. ICPTT 2011
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.