The human immunodeficiency virus (HIV) encodes a transcriptional transactivator (Tat), which binds to an RNA hairpin called the transactivation response element (TAR) that is located downstream of the site of initiation of viral transcription. Tat stimulates the production of full-length viral transcripts by RNA polymerase II (pol II). In this study, we demonstrate that Tat coimmunoprecipitates with the pol II holoenzyme in cells and that it binds to the purified holoenzyme in vitro. Furthermore, Tat affinity chromatography purifies a holoenzyme from HeLa nuclear extracts which, upon addition of TBP and TFIIB, supports Tat transactivation in vitro, indicating that it contains all the cellular proteins required for the function of Tat. By demonstrating that Tat interacts with the holoenzyme in the absence of TAR, our data suggest a single-step assembly of Tat and the transcription complex on the long terminal repeat of HIV.
The potential role of the nonconstitutive 72-kDa heat-shock protein (HSP72) in selective neuronal vulnerability to ischemia was studied in rats subjected to graded global ischemia. Immunocytochemistry using a monoclonal antibody against HSP72 was performed on tissue collected after 24 hr of reperfusion. The appearance of HSP72 immunoreactivity correlated in a graded fashion with those regions known to be selectively vulnerable in ischemia. That is, HSP72 was induced in only hilar interneurons and CA1 pyramidal cells following brief ischemia. After intermediate durations of ischemia, HSP72 was expressed in the CA3 neurons and cortical layers 3 and 5, and after the longest intervals, HSP72 appeared in dentate granule cells. Heat-shock protein expression preceded cell death (assessed with acid fuchsin staining) in all regions. This temporal profile suggests that the capability of neurons to express HSP72 is unlikely to account for selective vulnerability of different brain regions following ischemia; its role in neuroprotection during ischemic injury in vivo remains unknown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.