Detecting and monitoring air-polluting gases such as carbon monoxide (CO), nitrogen oxides (NOx), and sulfur oxides (SOx) are critical, as these gases are toxic and harm the ecosystem and the human health. Therefore, it is necessary to design high-performance gas sensors for toxic gas detection. In this sense, graphene-based materials are promising for use as toxic gas sensors. In addition to experimental investigations, first-principle methods have enabled graphene-based sensor design to progress by leaps and bounds. This review presents a detailed analysis of graphene-based toxic gas sensors by using first-principle methods. The modifications made to graphene, such as decorated, defective, and doped to improve the detection of NOx, SOx, and CO toxic gases are revised and analyzed. In general, graphene decorated with transition metals, defective graphene, and doped graphene have a higher sensibility toward the toxic gases than pristine graphene. This review shows the relevance of using first-principle studies for the design of novel and efficient toxic gas sensors. The theoretical results obtained to date can greatly help experimental groups to design novel and efficient graphene-based toxic gas sensors.
The use of metal nanoparticles is considered a good alternative to control phytopathogenic fungi in agriculture. To date, numerous metal nanoparticles (e.g., Ag, Cu, Se, Ni, Mg, and Fe) have been synthesized and used as potential antifungal agents. Therefore, this proposal presents a critical and detailed review of the use of these nanoparticles to control phytopathogenic fungi. Ag nanoparticles have been the most investigated nanoparticles due to their good antifungal activities, followed by Cu nanoparticles. It was also found that other metal nanoparticles have been investigated as antifungal agents, such as Se, Ni, Mg, Pd, and Fe, showing prominent results. Different synthesis methods have been used to produce these nanoparticles with different shapes and sizes, which have shown outstanding antifungal activities. This review shows the success of the use of metal nanoparticles to control phytopathogenic fungi in agriculture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.