(Acquisition) Collected for University of Florida's Institutional Repository by the UFIR Self-Submittal tool. Submitted by Michelle Mack.(Publication Status) Published(Funding) Funding for this research was provided by NASA Ecosystems and Carbon Cycle Grant NNX08AG13G, NOAA Global Carbon Cycle grant NA080AR4310526 and the Bonanza Creek Long Term Ecological Research Site program funded by NSF DEB-0620579 and USDA Forest Service, Pacific Northwest Research Station, grant PNW01-JV11261952-231
In arctic tundra and boreal forest ecosystems vegetation structural and functional influences on the surface energy balance can strongly influence permafrost soil temperatures. As such, vegetation changes will likely play an important role in permafrost soil carbon dynamics and associated climate feedbacks. Processes that lead to changes in vegetation, such as wildfire or ecosystem responses to rising temperatures, are of critical importance to understanding the impacts of arctic and boreal ecosystems on future climate. Yet these processes vary within and between ecosystems and this variability has not been systematically characterized across the arctic-boreal region. Here we quantify the distribution of vegetation productivity trends, wildfire, and near-surface soil carbon, by vegetation type, across the zones of continuous and discontinuous permafrost. Siberian larch forests contain more than one quarter of permafrost soil carbon in areas of continuous permafrost. We observe pervasive positive trends in vegetation productivity in areas of continuous permafrost, whereas areas underlain by discontinuous permafrost have proportionally less positive productivity trends and an increase in areas exhibiting negative productivity trends. Fire affects a much smaller proportion of the total area and thus a smaller amount of permafrost soil carbon, with the vast majority occurring in deciduous needleleaf forests. Our results indicate that vegetation productivity trends may be linked to permafrost distribution, fire affects a relatively small proportion of permafrost soil carbon, and Siberian larch forests will play a crucial role in the strength of the permafrost carbon climate feedback.
Climate change and land-use activities are increasing fire activity across much of the Siberian boreal forest, yet the climate feedbacks from forest disturbances remain difficult to quantify due to limited information on forest biomass distribution, disturbance regimes, and post-disturbance ecosystem recovery. Our primary objective here was to analyze post-fire accumulation of Cajander larch (Larix cajanderi Mayr.) aboveground biomass for a 100 000 km2 area of open forest in far northeastern Siberia. In addition to examining effects of fire size and topography on post-fire larch aboveground biomass, we assessed regional fire rotation and density, as well as performance of burned area maps generated from MODIS satellite imagery. Using Landsat imagery, we mapped 116 fire scar perimeters that dated ca. 1969–2007. We then mapped larch aboveground biomass by linking field biomass measurements to tree shadows mapped synergistically from WorldView-1 and Landsat 5 satellite imagery. Larch aboveground biomass tended to be low during early succession (≥ 25 yr, 271 ± 26 g m−2, n=66 [mean ± SE]) and decreased with increasing elevation and northwardly aspect. Larch aboveground biomass tended to be higher during mid-succession (33–38 yr, 746 ± 100 g m−2, n=32), though was highly variable. The high variability was not associated with topography and potentially reflected differences in post-fire density of tree regrowth. Neither fire size nor latitude were significant predictors of post-fire larch aboveground biomass. Fire activity was considerably higher in the Kolyma Mountains (fire rotation = 110 yr, fire density = 1.0 ± 1.0 fires yr−1 × 104 km−2 than along the forest-tundra border (fire rotation = 792 yr, fire density = 0.3 ± 0.3 fires yr−1 × 104 km−2. The MODIS burned area maps underestimated the total area burned in this region from 2000–2007 by 40%. Tree shadows mapped jointly using high and medium resolution satellite imagery were strongly associated (r2≈0.9) with field measurements of forest structure, which permitted spatial extrapolation of aboveground biomass to a regional extent. Better understanding of forest biomass distribution, disturbances, and post-disturbance recovery is needed to improve predictions of the net climatic feedbacks associated with landscape-scale forest disturbances in northern Eurasia
Abstract. Permafrost soils store between 1330 and 1580 Pg carbon (C), which is 3 times the amount of C in global vegetation, almost twice the amount of C in the atmosphere, and half of the global soil organic C pool. Despite the massive amount of C in permafrost, estimates of soil C storage in the high-latitude permafrost region are highly uncertain, primarily due to undersampling at all spatial scales; circumpolar soil C estimates lack sufficient continental spatial diversity, regional intensity, and replication at the field-site level. Siberian forests are particularly undersampled, yet the larch forests that dominate this region may store more than twice as much soil C as all other boreal forest types in the continuous permafrost zone combined. Here we present above-and belowground C stocks from 20 sites representing a gradient of stand age and structure in a larch watershed of the Kolyma River, near Chersky, Sakha Republic, Russia. We found that the majority of C stored in the top 1 m of the watershed was stored belowground (92 %), with 19 % in the top 10 cm of soil and 40 % in the top 30 cm. Carbon was more variable in surface soils (10 cm; coefficient of variation (CV) = 0.35 between stands) than in the top 30 cm (CV = 0.14) or soil profile to 1 m (CV = 0.20). Combined active-layer and deep frozen deposits (surface -15 m) contained 205 kg C m −2 (yedoma, non-ice wedge) and 331 kg C m −2 (alas), which, even when accounting for landscape-level ice content, is an order of magnitude more C than that stored in the top meter of soil and 2 orders of magnitude more C than in aboveground biomass. Aboveground biomass was composed of primarily larch (53 %) but also included understory vegetation (30 %), woody debris (11 %) and snag (6 %) biomass. While aboveground biomass contained relatively little (8 %) of the C stocks in the watershed, aboveground processes were linked to thaw depth and belowground C storage. Thaw depth was negatively related to stand age, and soil C density (top 10 cm) was positively related to soil moisture and negatively related to moss and lichen cover. These results suggest that, as the climate warms, changes in stand age and structure may be as important as direct climate effects on belowground environmental conditions and permafrost C vulnerability.
The transition zone between the northern boreal forest and the arctic tundra, known as the tundra-taiga ecotone (TTE) has undergone rapid warming in recent decades. In response to this warming, tree density, growth, and stand productivity are expected to increase. Increases in tree density have the potential to negate the positive impacts of warming on tree growth through a reduction in the active layer and an increase in competitive interactions. We assessed the effects of tree density on tree growth and climate-growth responses of Cajander larch (<i>Larix cajanderi</i>) and on trends in the normalized difference vegetation index (NDVI) in the TTE of Northeast Siberia. We examined 19 mature forest stands that all established after a fire in 1940 and ranged in tree density from 300 to 37,000 stems ha-1. High density stands with shallow active layers had lower tree growth, higher stand productivity, and more negative growth responses to growing season temperatures compared to low density stands with deep active layers. Variation in stand productivity across the density gradient was not captured by Landsat derived NDVI, but NDVI did capture annual variations in stand productivity. Our results suggest that the expected increases in tree density following fires at the TTE may effectively limit tree growth and that NDVI is unlikely to capture increasing productivity associated with changes in tree density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.