The reported patterns of trophectodermal expression of POU5F1 protein in blastocysts vary among species, and are possibly related to the differences in placental growth and function. This study investigated the pattern of embryonic POU5F1 expression in the horse, a species with delayed placental formation. Immature equine oocytes expressed POU5F1 protein in the cytoplasm and nucleus. Staining for POU5F1 protein in in vitro-produced (IVP) embryos decreased to day 5 of culture, then the nuclear staining increased to day 7. IVP day-7 to -11 blastocysts showed POU5F1 staining in nuclei throughout the blastocysts. In contrast, in vivo-produced day-7 to -10 blastocysts showed greatly reduced trophoectodermal POU5F1 protein expression. To determine whether the uterine environment modulates POU5F1 expression, IVP blastocysts were transferred to the uteri of mares, then recovered 2-3 days later (IVP-ET embryos). These embryos showed similar POU5F1 expression as the in vivo-produced embryos. Levels of POU5F1, SOX2, and NANOG mRNA in IVP-ET blastocysts were significantly higher in the inner cell mass than in trophectoderm (TE) cells. These data suggest that the differentiation of equine TE, as indicated by loss of POU5F1 expression, is impaired during in vitro culture, but proceeds normally when the embryos are exposed to the uterine environment. Previously reported differences in trophectodermal expression of POU5F1 among species may thus be in part artifactual, i.e. related to in vitro culture. Failure for correction of such changes by the uterine environment is a potential factor in the placental abnormalities seen after transfer of cultured embryos in some species.
Oct-4 is a key transcription factor in the control of early embryonic development and maintenance of a pluripotent cell population. Variation in Oct-4 expression patterns during embryo development have been reported among species, and have been related to the time of placental development in those species. This study was conducted to investigate Oct-4 expression pattern during early embryonic development in the horse, a species with relatively delayed placentation. In vitro-produced embryos were obtained from in vitro-matured oocytes via fertilization by intracytoplasmic sperm injection. Ex vivo blastocysts were recovered from mares that had been artificially inseminated. Oct-4 status was determined by immunocytochemistry; photomicrographs were taken at 4 standardized settings to aid in qualitative comparison of the amount of fluorescence. A total of 106 oocytes and embryos were evaluated. Immature oocytes showed Oct-4 expression in the nucleus and cytoplasm, as did early-cleaved embryos (2 to 5 cells, 1 to 2 days). Oct-4 expression in embryos at 3 to 4 days (6 to 12 cells) decreased and was restricted to the cytoplasm. From 5 to 6 days (15 cells to morulae), Oct-4 intensity increased and was exclusively found in the nuclei. In vitro-produced blastocysts (7 to 8 days) expressed Oct-4 equivalently in the trophectoderm and inner cell mass nuclei; culture for 2 to 3 more days (10 to 11 days) did not alter Oct-4 expression. However, when in vitro-produced blastocysts were transferred to the uteri of mares and recovered after 2 to 3 days (IVP-ET), the embryos showed strong expression of Oct-4 within the inner cell mass and limited expression in the trophectoderm, and a similar pattern was seen for ex vivo-recovered embryos. In bigger embryos (such as a 1779-�m ex vivo embryo and a 1121-�m IVP-ET embryo), the trophectoderm lost staining completely. These results suggest that Oct-4 expression is present in both nucleus and cytoplasm in equine oocytes and early-cleaved embryos as a result of maternal mRNA accumulation. Oct-4 protein decreases over the first few days of embryonic development as these stores are used. The shift to greater expression, in the nucleus only, during further embryo development suggests embryonic genome activation. Oct-4 expression in the trophectoderm of in vitro-produced blastocysts was different from that in blastocysts that had been exposed to the uterus (both ex vivo and IVP-ET); this indicates that differentiation of the trophectoderm is dependent upon factors present in the uterine environment. The Oct-4 expression in the trophectoderm of in vitro-produced equine blastocysts thus appears to be an artifact due to in vitro culture; this finding may be applicable to the reported patterns of Oct-4 expression in embryos of other species. This work was supported by the Link Equine Research Endowment Fund, Texas A&M University.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.