Recent results continue to show the general consensus that ozone-related increases in UV-B radiation can negatively influence many aquatic species and aquatic ecosystems (e.g., lakes, rivers, marshes, oceans). Solar UV radiation penetrates to ecological significant depths in aquatic systems and can affect both marine and freshwater systems from major biomass producers (phytoplankton) to consumers (e.g., zooplankton, fish, etc.) higher in the food web. Many factors influence the depth of penetration of radiation into natural waters including dissolved organic compounds whose concentration and chemical composition are likely to be influenced by future climate and UV radiation variability. There is also considerable evidence that aquatic species utilize many mechanisms for photoprotection against excessive radiation. Often, these protective mechanisms pose conflicting selection pressures on species making UV radiation an additional stressor on the organism. It is at the ecosystem level where assessments of anthropogenic climate change and UV-related effects are interrelated and where much recent research has been directed. Several studies suggest that the influence of UV-B at the ecosystem level may be more pronounced on community and trophic level structure, and hence on subsequent biogeochemical cycles, than on biomass levels per se.
The health of freshwater and marine ecosystems is critical to life on Earth. The impact of solar UV-B radiation is one potential stress factor that can have a negative impact on the health of certain species within these ecosystems. Although there is a paucity of data and information regarding the effect of UV-B radiation on total ecosystem structure and function, several recent studies have addressed the effects on various species within each trophic level. Climate change, acid deposition, and changes in other anthropogenic stressors such as pollutants alter UV exposure levels in inland and coastal marine waters. These factors potentially have important consequences for a variety of aquatic organisms including waterborne human pathogens. Recent results have demonstrated the negative impacts of exposure to UV-B radiation on primary producers, including effects on cyanobacteria, phytoplankton, macroalgae and aquatic plants. UV-B radiation is an environmental stressor for many aquatic consumers, including zooplankton, crustaceans, amphibians, fish, and corals. Many aquatic producers and consumers rely on avoidance strategies, repair mechanisms and the synthesis of UV-absorbing substances for protection. However, there has been relatively little information generated regarding the impact of solar UV-B radiation on species composition within natural ecosystems or on the interaction of organisms between trophic levels within those ecosystems. There remains the question as to whether a decrease in population size of the more sensitive primary producers would be compensated for by an increase in the population size of more tolerant species, and therefore whether there would be a net negative impact on the absorption of atmospheric carbon dioxide by these ecosystems. Another question is whether there would be a significant impact on the quantity and quality of nutrients cycling through the food web, including the generation of food proteins for humans. Interactive effects of UV radiation with changes in other stressors, including climate change and pollutants, are likely to be particularly important.
Summary 1. All heavy metals, including those that are essential micronutrients (e.g. copper, zinc, etc.), are toxic to algae at high concentrations. 2. One characteristic feature of heavy‐metal toxicity is the poisoning and inactivation of enzyme systems. Many of the physiological and biochemical processes, viz., photosynthesis, respiration, protein synthesis and chlorophyll synthesis, etc., are severely affected at high metal concentrations. 3. Some algae inhabit waters chronically polluted with heavy‐metal‐laden wastes from mining and smelting operations; Nodularia sp., Oscillatoria sp., Cladophora sp., Hormidium sp., Fucus sp. and Laminaria sp., etc., occur in metal‐rich waters. These algal forms are probably more capable of combating the toxic levels of heavy metals and this attribute is a result of physiological and/or genetic adaptations. The sensitivity or tolerance to heavy metals varies amongst different algae. The phenomena of multiple tolerance and co‐tolerance may be exhibited by some algae. 4. Heavy‐metal pollution causes reduction in species diversity leading to the dominance of a few tolerant algal forms. The primary productivity also decreases after metal supplementation. 5. The uptake and accumulation of heavy metals can be active (energy‐dependent), passive (energy‐independent), or both. 6. Heavy metals can be safely stored as intranuclear complexes by some algae. Notwithstanding this, some changes in the cell wall can enable the algae to tolerate heavy metals by checking the entry of the metals (exclusion mechanism). 7. The metal content of algae growing in a waterbody may yield valuable information for simulating heavy metal pollution: several species of Cladophora and Fucus have been extensively used for this purpose. 8. Several factors affect and determine toxicity of heavy metals to algae. At low pH, the availability of heavy metals to algae is greatly increased, as a consequence of which pronounced toxicity is evident. Hard waters decrease metal toxicity. Some ions, e.g., calcium, magnesium and phosphorus, can alleviate toxicity of metals. 9. The presence of other metals can influence toxicity of a heavy metal through simple additive effect or by synergistic and antagonistic interactions. Similarly, other pollutants can influence heavy‐metal toxicity. 10. The toxicity of heavy metals depends upon their chemical speciation. Various ionic forms of a metal characterized by different valency states, may be differentially toxic to a test alga. 11. Amino acids, organic matter, humic acids, fulvic acid, EDTA, NTA, etc. can complex with heavy metals and render them unavailable. This may eventually lead to less toxicity. 12. Heavy‐metal toxicity largely depends upon algal population density: the denser the population the more numerous the cellular sites available, leading to decreased toxicity.
Regarding the effects of UV-B radiation on aquatic ecosystems, recent scientific and public interest has focused on marine primary producers and on the aquatic web, which has resulted in a multitude of studies indicating mostly detrimental effects of UV-B radiation on aquatic organisms. The interest has expanded to include ecologically significant groups and major biomass producers using mesocosm studies, emphasizing species interactions. This paper assesses the effects of UV-B radiation on dissolved organic matter, decomposers, primary and secondary producers, and briefly summarizes recent studies in freshwater and marine systems.Dissolved organic carbon (DOC) and particulate organic carbon (POC) are degradation products of living organisms. These substances are of importance in the cycling of carbon in aquatic ecosystems. UV-B radiation has been found to break down high-molecular-weight substances and make them available to bacterial degradation. In addition, DOC is responsible for short-wavelength absorption in the water column. Especially in coastal areas and freshwater ecosystems, penetration of solar radiation is limited by high concentrations of dissolved and particulate matter. On the other hand, climate warming and acidification result in faster degradation of these substances and thus enhance the penetration of UV radiation into the water column.Several research groups have investigated light penetration into the water column. Past studies on UV penetration into the water column were based on temporally and spatially scattered measurements. The process of spectral attenuation of radiant energy in natural waters is well understood and straightforward to model. Less known is the spatial and temporal variability of in-water optical properties influencing UV attenuation and there are few long-term observations. In Europe, this deficiency of measurements is being corrected by a project involving the development of a monitoring system (ELDONET) for solar radiation using three-channel dosimeters (UV-A, UV-B, PAR) that are being installed from Abisko (North Sweden, 688N, 198E) to Tenerife (Canary Islands, 278N, 178W). Some of the instruments have been installed in the water column (North Sea, Baltic Sea, Kattegat, East and Western Mediterranean, North Atlantic), establishing the first network of underwater dosimeters for continuous monitoring.Bacteria play a vital role in mineralization of organic matter and provide a trophic link to higher organisms. New techniques have substantially changed our perception of the role of bacteria in aquatic ecosystems over the recent past and bacterioplankton productivity is far greater than previously thought, having high division and turnover rates. It has been shown that bacterioplankton play a central role in the carbon flux in aquatic ecosystems by taking up DOC and remineralizing the carbon. Bacterioplankton are more prone to UV-B stress than larger eukaryotic organisms and, based on one study, produce about double the amount of cyclobutane dimers. Recently, th...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.