The Majorana's stellar representation, which represents the evolution of a quantum state with the trajectories of the Majorana stars on a Bloch sphere, provides an intuitive way to study a physical system with a high dimensional projective Hilbert space. In this Letter, we study the Berry phase by these stars and their loops on the Bloch sphere. It is shown that the Berry phase of a general spin state can be expressed by an elegant formula with the solid angles of Majorana star loops. Furthermore, these results can be used to a general state with arbitrary dimensions. To demonstrate our theory, we study a two mode interacting boson system. Finally, the relation between stars' correlations and quantum entanglement is discussed.
We propose a scheme of photon blockade in a system comprising of coupled cavities embedded in Kerr nonlinear material, where two cavities are driven and dissipated. We analytically derive the exact optimal conditions for strong photon antibunching, which are in good agreement with those obtained by numerical simulations. We find that conventional and unconventional photon blockades have controllable flexibilities by tuning the strength ratio and relative phase between two complex driving fields. Such unconventional photon-blockade effects are ascribed to the quantum interference effect to avoid two-photon excitation of the coupled cavities. We also discuss the statistical properties of the photons under given optimal conditions. Our results provide a promising platform for the coherent manipulation of photon blockade, which has potential applications for quantum information processing and quantum optical devices.
We investigate the quantum synchronization phenomena of two mechanical oscillators of different frequencies in two optomechanical systems under periodically modulating cavity detunings or driving amplitudes, which can interact mutually through an optical fiber or a phonon tunneling. The cavities are filled with Kerr-type nonlinear medium. It is found that, no matter which the coupling and periodically modulation we choose, both of the quantum synchronization of nonlinear optomechanical system are more appealing than the linear optomechanical system. It is easier to observe greatly enhanced quantum synchronization with Kerr nonlinearity. In addition, the different influences on the quantum synchronization between the two coupling ways and the two modulating ways are compared and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.