The 15 January 2022 climactic eruption of Hunga volcano, Tonga, produced an explosion in the atmosphere of a size that has not been documented in the modern geophysical record. The event generated a broad range of atmospheric waves observed globally by various ground-based and spaceborne instrumentation networks. Most prominent is the surface-guided Lamb wave (
≲
0.01 Hz), which we observed propagating for four (+three antipodal) passages around the Earth over six days. Based on Lamb wave amplitudes, the climactic Hunga explosion was comparable in size to that of the 1883 Krakatau eruption. The Hunga eruption produced remarkable globally-detected infrasound (0.01–20 Hz), long-range (~10,000 km) audible sound, and ionospheric perturbations. Seismometers worldwide recorded pure seismic and air-to-ground coupled waves. Air-to-sea coupling likely contributed to fast-arriving tsunamis. We highlight exceptional observations of the atmospheric waves.
Seismic and infrasound multistation ambient‐noise interferometry has been widely used to infer ground and atmospheric properties, and single‐station and autocorrelation seismic interferometry has also shown potential for characterizing Earth structure at multiple scales. We extend autocorrelation seismic interferometry to ambient atmospheric infrasound recordings that contain persistent local noise from waterfalls and rivers. Across a range of geographic settings, we retrieve relative sound‐speed changes that exhibit clear diurnal oscillations consistent with temperature and wind variations. We estimate ambient air temperatures from variations in relative sound speeds. The frequency band from 1 to 2 Hz appears most suitable to retrieve weather parameters as nearby waterfalls and rivers may act as continuous and vigorous sources of infrasound that help achieve convergence of coherent phases in the autocorrelation codas. This frequency band is also appropriate for local sound‐speed variations because it has infrasound with wavelengths of ∼170–340 m, corresponding to a typical atmospheric boundary layer height. After applying array analysis to autocorrelation functions derived from a three‐element infrasound array, we find that autocorrelation codas are composed of waves reflected off nearby topographic features, such as caldera walls. Lastly, we demonstrate that autocorrelation infrasound interferometry offers the potential to study the atmosphere over at least several months and with a fine time resolution.
We characterize and interpret a new type of infrasound signal originating from the summit of Volcán Cotopaxi (Ecuador) that was primarily observed between September 2015 and March 2016, following the 2015 eruptive period. This infrasound waveform is a slowly decaying sinusoid with exceptional low‐frequency (fp = 0.2 Hz) and high quality factor (Q = ~10) and resembles the shape of tornillo seismic waveforms. The repeating events, occurring about once per day in early 2016, are stable in frequency content, and we attribute them to excitation of a vertical‐walled crater, with radius of about 125 m and length of 300 m. Spectral properties of the tornillo permit constraints on crater sound speed (335 m/s ± 6%) and temperature (4–32°C). The initial polarity of the tornillos is predominantly a rarefaction and could reflect repeating crater bottom collapse events (implosions) or explosion sources whose infrasound is heavily modulated by the crater's pipe‐like geometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.