The mode of n-hexadecane uptake by two organisms-Pseudomonas M 1 and Pseudomonas N 1-was studied. During the growth of Pseudomonas M 1 on n-hexadecane, no extracellular biosurfactant/bioemulsifier was produced, no significant n-hexadecane pseudosolubilization was observed, and the reduction of surface and interfacial tensions in the cell-free culture broth was negligible. EDTA, a known inhibitor of hydrocarbon pseudosolubilization, did not inhibit the growth of the organism on n-hexadecane. Normal hexadecane-grown cells showed strong surface-active properties and capacity to adhere firmly to hydrocarbon phase. It was concluded that in this organism, surface-active properties of the cells facilitate attachment of cells to the hydrocarbon-water interface generated by agitation, and promote substrate uptake and growth; no hydrocarbon pseudosolubilization or extracellular mediator is involved in the substrate uptake. Pseudomonas N 1 grew on n-hexadecane much faster than Pseudomonas M 1. Growth of this organism on n-hexadecane was associated with the extracellular production of biosurfactant-bioemulsifier and n-hexadecane pseudosolubilizing factor; the growth was strongly inhibited by 5 mM EDTA, indicating that hydrocarbon pseudosolubilization was the dominant factor in substrate uptake. The rate of n-hexadecane pseudosolubilization was high enough to account for the substrate up take rate. Hydrocarbon emulsifying and n-hexadecane pseudosolubilizing factors were isolated and tentatively characterized as lipoprotein and glycoprotein, respectively. Both factors act in a synergistic manner to provide enhanced hydrocarbon transport to cells through pseudosolubilization. It is proposed that this facility of mediated hydrocarbon transport is the basis for the relatively fast rate of growth of Pseudomonas N 1 on hydrocarbon.
Using EDTA and proteolytic enzymes to suppress hydrocarbon solubilization, direct evidence is presented in support of the mechanism of liquid hydrocarbon uptake by microbial cells predominantly from the solubilized or accommodated substrate. EDTA (2-5mM) strongly inhibited growth of three yeast species and one bacterial species on n-hexadecane and the inhibition was removed by surfactant-emulsified and surfactant-solubilized alkane and also by excess addition of Ca(2+). EDTA had no inhibitory effect on the growth of the organisms on soluble substrates such as sodium acetate and nutrient broth or on n-pentane, a volatile alkane which was primarily transported by diffusion from gas phase. EDTA was shown to have no significant effect on the adsorption of cells on alkane drops. EDTA inhibition of growth was considered to be due to suppression of alkane solubilization, brought about by the solubilizing factor(s) produced by cells. It was shown that this chelating agent did not inhibit the growth of yeast on solubilized alkane but strongly inhibited its growth on alkane drops. It was demonstrated that adherent capacity of microbial cell to oil phase was closely related to the state of hydrocarbon emulsification and had no relationship to the ability of organisms to grow on hydrocarbon. Certain proteolytic enzymes inhibited the growth of yeast on alkane, presumably by digesting the alkane solubilizing protein, but not on glucose, and the inhibition was removed by a supply of surfactant-emulsified and surfactant-solubilized alkane. Specific solubilization of various hydrocarbon types during growth of the prokaryotic bacterial strain was demonstrated. The specific solubilization of hydrocarbon was strongly inhibited strain was demonstrated. The specific solubilization of hydrocarbon was strongly inhibited by EDTA, and the inhibition was removed by excess Ca(2+). It was concluded that specific solubilization of hydrocarbons is an important mechanism in the microbial uptake of hydrocarbons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.