Foliar applications of growth regulators (GR) in early autumn induced leaf retention (LR) on peach [Prunu,s persica (L.) Batsch.] and `Montmorency' tart cherry (Prunus cerasus L.) trees. In `Johnson Elberta' peach, the relative effectiveness of GRs on LR was NAA = Promalin (BA + GA4+7) > GA4+7 > GA3 > BA > control, and on leaf detachment pull force (PF) NAA > BA + GA4+7 > GA4+7 = GA3 > BA3 > BA > control. Relative GR-induced chlorophyll (CL) content in retained leaves was BA + GA4+7 > GA4+7 > GA3 > BA > control > NAA. Relative xanthophyll (XN) content of retained leaves was NAA > control > BA > GA3 = GA4+7 = BA + GA4+7. Treating only half of a peach tree with NAA did not affect LR on the untreated side. NAA decreased subsequent bud and flower size in peach. Bud hardiness was enhanced by NAA in `Johnson Elberta' peach but not in `Redhaven' peach or in `Montmorency' tart cherry. NAA increased hardening on both the leafy treated (foliated) and untreated (defoliated) sides of half-treated `Johnson Elberta' trees. Increased endodormancy duration, as measured by GA3 forcing of terminal leaf buds, was proportional to LR. Chemical names used: N-(phenylmethyl)- 1H-purin-6-amine (BA); (1a,2ß,4bß,10ß)-2,4a,7-trihydroxy-l-methyl-8-methylenegibb-3-ene-l,lO-dicarboxylic acid,l,4a-lactone (GA3, GA4+7); l-naphthaleneacetic acid (NAA).
Chilling-temperature response curves were obtained by testing seed germinability at 25°C after 0 to 2880 hr (120-hr intervals) of stratification at temperatures from −4° to 16°. The curves of the species tested were bellshaped with a definite skew to the cold side in some species. Some activity was detected at −2° and at 16°, the approximate limiting temperatures of the process. Dormancy was broken most rapidly at 4° in seeds of P. persica, P. communis (cold climate source), P. avium, P. mahaleb and M. domestica, whereas 6° was more effective in P. armeniaca, C. oblonga, and P. communis (warm climate source). The data were used to define a stratification degree hour and develop a stratification model for the seed of these species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.