Wind power is one of the fastest growing renewable sources of generation in the U.S. and many other countries. As wind-generated electricity continues to grow, electric utilities increasingly grapple with the challenges of connecting that power to the grid although maintaining system security. It is difficult to predict and control the output of wind generation because of wind intermittency and a reserve capacity is required to deal with inherent uncertainty. This study presents an approach for securityconstrained unit commitment (SCUC) with integration of an energy storage system (ESS) and wind generation. Compressed air energy storage (CAES) is considered as an alternative solution to store energy. For economical operation and control purposes, utilities with CAES are interested in the availability and the dispatch of CAES on an hourly basis, given the specific characteristics of CAES. The main contribution of this study is the development of enhanced SCUC formulation and solution techniques with wind power, CAES and multiple constraints including fuel and emission limit. Proposed approach allows simultaneous optimisation of the energy and the ancillary services (AS). Case studies with eight-bus and 118-bus systems are presented to validate the proposed model. This study also contributes by conducting comprehensive studies to analyse the impact of CAES system on locational pricing, economics, peak-load shaving, transmission congestion management, wind curtailment and environmental perspective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.