The present study investigated whether best friend and/or siblings' smoking affected adolescent smoking. Data of the Dutch Family and Health study was used in which 428 families participated with two adolescent children between the age of 13 and 17 years. Our findings showed that adolescents with older siblings who smoked were more likely to smoke one year later. In contrast, older adolescents were not affected by smoking of their younger siblings. Smoking of the best friend influenced smoking of the younger sibling. With regard to the specific transition from never smoking to smoking initiation, older and younger siblings with a smoking best friend were more likely to start smoking one year later. Younger siblings with older siblings who smoked were more likely to initiate smoking one year later. The influence of friends and siblings on adolescent smoking appeared to be small to moderate.
We evaluated a questionnaire-based system for classifying homes into groups with distinctly different chances of accumulating combustion products from cooking appliances. The system was based on questions about type of cooking appliance, type and use of ventilation provisions, and kitchen size. Real-time measurements were made of CO, CO(2), temperature, and water vapor, and passive sampling was performed of nitrogen oxides, over a week-long period in 74 kitchens. During the measurements, inhabitants kept a diary to record appliance use time and use of ventilation provisions. The questionnaire-based and diary-based home classifications for the 'Chance of Accumulation of Combustion Products' (CACP) turned out to agree fairly well. For CO(2) as well as for CO a significant difference between the 'high' and 'low' CACP groups was found for the mean accumulation in the kitchen during cooking of the combustion generated concentrations. These facts are considered to be important experimental evidence of the CACP stratification being valid for our study population. In the homes studied, NO(2) as well as CO concentrations were found to be lower compared with previous studies in The Netherlands. Practical Implications Previous studies on indoor combustion product dispersal conducted in the early- to mid-1980s in the Netherlands showed much higher NO(2) and CO concentrations than the present study. Apparently, the removal of combustion products formed during cooking is more efficient in the (mostly newer) homes that we studied than in the homes studied in the early- to mid-1980s. More detailed knowledge of kitchen situations is needed to improve the CACP model. Future studies can achieve this by using questionnaires on the kitchen situation, diaries and real-time measurements of the combustion products under consideration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.