Single-mode fibres with low loss and a large transmission bandwidth are a key enabler for long-haul high-speed optical communication and form the backbone of our information-driven society. However, we are on the verge of reaching the fundamental limit of single-mode fibre transmission capacity. Therefore, a new means to increase the transmission capacity of optical fibre is essential to avoid a capacity crunch. Here, by employing few-mode multicore fibre, compact three-dimensional waveguide multiplexers and energy-efficient frequency-domain multiple-input multiple-output equalization, we demonstrate the viability of spatial multiplexing to reach a data rate of 5.1 Tbit s −1 carrier −1 (net 4 Tbit s −1 carrier −1 ) on a single wavelength over a single fibre. Furthermore, by combining this approach with wavelength division multiplexing with 50 wavelength carriers on a dense 50 GHz grid, a gross transmission throughput of 255 Tbit s −1 (net 200 Tbit s −1 ) over a 1 km fibre link is achieved. W ith the persistent exponential growth in Internet-driven traffic, the backbone of our information-driven society, based on single-mode fibre (SMF) transmission, is rapidly approaching its fundamental capacity limits 1 . In the past, capacity increases in SMF transmission systems have been achieved by exploiting various dimensions, including polarization and wavelength division multiplexing, in tandem with advanced modulation formats and coherent transmission techniques 2 . However, the impending capacity crunch implies that carriers are lighting up dark fibres at an exponentially increasing rate to support societal capacity demands 3 . To alleviate the corresponding costs and increased energy requirements associated with the linear capacity scaling from using additional SMFs, spatial division multiplexing (SDM) within a single fibre can provide a solution 4,5 . By introducing an additional orthogonal multiplexing dimension, the capacity, spectral and energy efficiency, and therefore the cost per bit, can be decreased, which is vital for sustaining the business model of major network stakeholders. To fulfil the SDM promise, a new paradigm is envisaged that allows up to two orders of magnitude capacity increase with respect to SMFs 6 . SDM is achieved through multiple-input multiple-output (MIMO) transmission, employing the spatial modes of a multimode fibre (MMF) 7 , or multiple single-mode cores, as channels 8-13 . Recently, a distinct type of MMF, the few-mode fibre (FMF), has been developed to co-propagate three or six linear polarized (LP) modes 14-17 . Driven by rapid enhancements in high-speed electronics, digital signal processing (DSP) MIMO techniques can faithfully recover mixed transmission channels 18 , allowing spectral efficiency increases as spatial channels occupy the same wavelength. State-of-the-art single-carrier FMF transmission experiments have demonstrated capacity increases in a single fibre by exploiting six spatial modes, achieving 32 bit s −1 Hz −1 spectral efficiency 17 . By using multicore transmissi...
Transmission of a 73.7 Tb/s (96x3x256-Gb/s) DP-16QAM mode-division-multiplexed signal over 119km of few-mode fiber transmission line incorporating an inline multi mode EDFA and a phase plate based mode (de-)multiplexer is demonstrated. Data-aided 6x6 MIMO digital signal processing was used to demodulate the signal. The total demonstrated net capacity, taking into account 20% of FEC-overhead and 7.5% additional overhead (Ethernet and training sequences), is 57.6 Tb/s, corresponding to a spectral efficiency of 12 bits/s/Hz. ©2012 Optical Society of America
25 ps: respectively. We modulated them with a four-bit pulse pattem by using an electro-optic modulator, and injected into the DIA converter. The output pulses from the DIA converter were gated with an EA modulator at 2.5Gbit/s, and fed into the optical power monitor. The gate width was -lOOps. Figs. 3a and b show an input pulse pattern (0110) and an output waveform from the D/A converter, respectively, which we observed on a sampling oscilloscope. The height of the peak marked by the solid square in Fig. 3b corresponds to the digital-to-analogue converted 01 10 pattems, that we gated with the EA modulator. The inset in Fig. 3b show:; the theoretical output waveform, which agrees well with the measured waveform. Conclusion:We have demonstrated a novel pulse pattem recognition circuit based on a PLC DIA converter. Four-bit pulse sequences at IOGbit/s were successfully recognised in the optical stage. This approach is promising for future packet-switched photonic networks.
Error-free demultiplcxiiig of 40 Gbit/s clianncls oul of a 160 Gbit/s optical time-division signal is demonstratcd using four-wwc mixing in a semiconductor optical amplifier.
Document VersionPublisher's PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication:• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Abstract-Electronic chromatic dispersion compensation employing maximum-likelihood sequence estimation (MLSE) has recently been the topic of extensive research and a range of commercial products. It is well known that MLSE provides a considerable benefit for amplitude modulated modulation formats such as ON-OFF keying (OOK) and optical duobinary. However, when applied to optical phase modulation formats, such as differential phase-shift keying (DPSK) and differential quadrature phase-shift keying (DQPSK), it has been shown that the benefit is only marginal. This paper investigates joint-decision MLSE (JD-MLSE) detection applied to 10.7-Gb/s DPSK. It demonstrates that a JD-MLSE using the constructive and destructive components preserves the 3-dB optical signal-to-noise ratio (OSNR) advantage of DPSK over OOK in dispersion-limited optical systems. Furthermore, we demonstrate that the use of a shortened MZDI with MLSE for the 10.7-Gb/s DPSK modulation can equalize an accumulated chromatic dispersion of 4000 ps/nm. In addition, we discuss in this paper different MLSE schemes applied to 2 10.7-Gb/s DQPSK modulation. It is shown that a joint-symbol MLSE (JS-MLSE) on the balanced outputs of the in-phase and quadrature components gives the best performance.Index Terms-Differential phase-shift keying (DPSK), differential quadrature phase-shift keying (DQPSK), joint-decision MLSE (JD-MLSE), Mach-Zehnder delay interferometer (MZDI), maximum-likelihood sequence estimation (MLSE).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.