Hormone dependent breast cancer (HDBC) is the most commonly diagnosed tumor type in women. Adjuvant endocrine therapies (ET) have been the cornerstone in the clinical management of HDBC patients for over forty years. A vast proportion of HDBC patients incur long periods of clinical dormancy following ET, with tumour awakening appearing at a steady pace for up to 25 years (Pan et al., 2017). Extensive genomic studies have demonstrated that 15-30% of clinical relapses develop recurrent genomic changes which contribute to drug resistance (i.e. ESR1 activating mutations) (Bertucci et al., 2019; Magnani et al., 2017; Razavi et al., 2018). However, even in these cases, there is no conclusive evidence around the pre-existence vs. de novo nature of these events. We previously showed that ETs can trigger and select for dormancy in subpopulations of breast cancer (Hong et al., 2019). In this work we took two novel approaches to investigate the dormancy and awakening roadmap of HDBC cells at unprecedented detail. Firstly, we leveraged a rare cohort of n=5 patients which were treated with primary adjuvant ETs in the absence of surgery (TRACING-HT) to dissect the contribution of genomic aberrations to tumor awakening. Next, we developed a first of its kind evolutionary study in vitro to systematically annotate cancer cells adaptive strategies at single cell level in unperturbed systems during a period of several months (TRADITIOM). Collectively our data suggest that ETs steer HDBC cells into an inherently unstable dormant state. Over time, routes to awakening emerge sporadically and spontaneously in single lineages. Each dormant cell retains an intrinsic awakening probability which we propose is a function of epigenetic decay. Awakening occurs without an external trigger and involves multiple apparent endpoint phenotypes that cannot be fully explained by conventional Darwinian genetic selection processes. Finally, our data show that common genetic hits associated with resistance happen downstream of awakening. Overall, our data have uncovered previously unsuspected roles for stochastic nongenetic events during dormancy with profound clinical implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.