Magnetooptical garnets combine high Faraday rotation with low optical losses in the near infrared region where optical communication via glass fiber is established. In this spectral range garnets are the only materials discussed to realize nonreciprocal devices as optical isolators and circulators. Although such devices are available as microoptical components, practical versions of their integrated counterparts are still lacking. Numerous concepts have been developed theoretically many of which are tested experimentally. This paper presents an overview of the state of the art of the applications of garnet films in integrated optics. Also the technique of combining garnets with semiconductor materials is shortly discussed.
A waveguide optical isolator based on nonreciprocal interference is demonstrated. Ridge waveguides are fabricated in a Mach–Zehnder configuration on a single film of bismuth-, lutetium-, neodymium-iron garnet. With this design, no polarizers are required to achieve extinction in the backward propagation direction. This isolator exhibits a 19 dB extinction ratio at λ=1.54 μm. A flat wavelength dependence, to within 2 dB, has been observed in the range between 1.49 and 1.57 μm.
We demonstrate the integration of a single-crystal magneto-optical film onto thin silicon-on-insulator (SOI) waveguides by use of direct wafer bonding. Simulations show that the high confinement and asymmetric structure of SOI allows an enhancement of approximately 3x over the nonreciprocal phase shift achieved in previous designs; this value is confirmed by our measurements. Our structure will allow compact magneto-optical nonreciprocal devices, such as isolators, integrated on a silicon waveguiding platform.
An observation of self-focusing of dipolar spin waves in garnet film media is reported. In particular, we show that the quasistationary diffraction of a finite-aperture spin-wave beam in a focusing medium leads to the concentration of the wave power in one focal point rather than along a certain line ͑channel͒. The obtained results demonstrate the wide applicability of nonlinear spin-wave media to study nonlinear wave phenomena using an advanced combined microwave-Brillouin-light-scattering technique for a two-dimensional mapping of the spin-wave amplitudes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.