Near Infrared (NIR) Spectroscopy technique combined with chemometrics methods were used to group and identify samples of different soy cultivars. Spectral data, collected in the range of 714 to 2500 nm (14000 to 4000 cm -1 ), were obtained from whole grains of four different soybean cultivars and were submitted to different types of pre-treatments. Chemometrics algorithms were applied to extract relevant information from the spectral data, to remove the anomalous samples and to group the samples. The best results were obtained considering the spectral range from 1900.6 to 2187.7 nm (5261.4 cm -1 to 4570.9 cm -1) and with spectral treatment using Multiplicative Signal Correction (MSC) + Baseline Correct (linear fit), what made it possible to the exploratory techniques Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) to separate the cultivars. Thus, the results demonstrate that NIR spectroscopy allied with de chemometrics techniques can provide a rapid, nondestructive and reliable method to distinguish different cultivars of soybeans.
Foram analisadas amostras de quiabo dos municípios de Caruaru e Vitória de Santo Antão, em Pernambuco, assim como nos municípios de Ceará-Mirim, Macaíba e Extremoz no estado do Rio Grande do Norte. A aplicação de dois métodos de análise exploratória de dados: Análise de Componentes principais - PCA e Análise de Agrupamentos Hierárquicos - HCA permitiu a discriminação geográfica do quiabo proveniente dos dois estados.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.