A detailed experimental investigation was carried out to examine the influence of blade loading on the three-dimensional flow in an annular compressor cascade. Data were acquired over a range of incidence angles. Included are airfoil and endwall flow visualization, measurement of the static pressure distribution on the flow passage surfaces, and radial-circumferential traverse measurements. The data indicate the formation of a strong vortex near the rear of the blade passage. This vortex transports low-momentum fluid close to the hub toward the blade suction side and seems to be partly responsible for the occurrence of a hub corner stall. The effect of increased loading on the growth of the hub corner stall and its impact on the passage blockage are discussed. Detailed mapping of the blade boundary layer was done to determine the loci of boundary layer transition and flow separation. The data have been compared with results from an integral boundary layer method.
The interaction between impeller and diffuser is considered to have strong influence on the flow in centrifugal compressors. However, the knowledge about this influence is still not satisfying. This two-part paper presents an experimental investigation of the effect of impeller-diffuser interaction on the unsteady and the time averaged flow field configuration in impeller and diffuser and the performance of these components. The flat wedge vaned diffuser of the investigated compressor allows an independent adjustment of diffuser vane angle and radial gap between impeller exit and diffuser vane inlet. Attention is mainly directed to the radial gap, as it determines the intensity of the impeller-diffuser interaction. Part I deals with the integral flow losses and the diffusion in impeller, diffuser and the entire compressor. An extensive test series with steady probe measurements at impeller exit and diffuser exit was performed at 10 different diffuser geometries and different operating points. The results show that in most cases smaller radial gaps are leading to a more homogeneous flow field at diffuser vane exit and to a higher diffuser pressure recovery resulting in a higher compressor efficiency. On the other hand, impeller efficiency is hardly affected by the radial gap. In Part II, measurements with a laser-2-focus velocimeter are presented illuminating the reasons for the effects found. The experimental results are published as an open CFD test case under the name “Radiver.”
The interaction between impeller and diffuser is considered to have strong influence on the flow in highly loaded centrifugal compressors. However, the knowledge about this influence is still not satisfying. This two-part paper presents an experimental investigation of the effect of impeller-diffuser interaction on the unsteady and the time averaged flow configuration in impeller and diffuser and the performance of these components. The flat wedge vaned diffuser of the investigated stage allows an independent adjustment of diffuser vane angle and radial gap between impeller exit and diffuser vane inlet. Attention is mainly directed to the radial gap, as it determines the intensity of the impeller-diffuser interaction. In part I it was shown that smaller radial gaps improve diffuser pressure recovery, whereas impeller efficiency is hardly affected. Part II focuses on the reasons for these effects. Measurements with a laser-2-focus velocimeter in the highly unsteady flow field between the impeller exit region and diffuser throat were performed at three different diffuser geometries allowing a detailed flow analysis. Especially the unsteady results show that for a smaller radial gap more impeller wake fluid is conveyed towards the highly loaded diffuser vane pressure side reducing its loading and leading to a better diffusion in the diffuser channel. Concerning the impeller flow, it was found that a smaller radial gap is leading to a noticeable reduction of the wake region at impeller exit. The experimental results are intended to be published as an open CFD testcase under the name “Radiver”.
In axial-flow turbomachines considerable dynamic blade loads and noise production occur as a result of the unsteady blade row interaction between rotor and stator blades. This paper presents results of midspan measurements of the dynamic pressure distribution on the stator blade surface (fixed number of blades) for various rotor-blade numbers and various axial clearances between rotor and stator. For this purpose, one stator blade had been provided with eleven semiconductor pressure transducers in the midspan section. Simultaneously, the sound pressure level was measured at two axial distances downstream of the stator by four condensator microphones distributed along the circumference in each of the two sections and mounted flush with the wall surface. The wake-flow distribution downstream of the rotor could be obtained by a rotating three-hole pressure probe. The results of the corresponding dynamic pressure-measurements and noise measurements are discussed and compared with results from theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.