Statements utilized or mentioned in the Part I are proved or discussed in detail. Especially it is shown that for finite-dimensional state spaces the strictly positive densities being strictly less than two are E-V representable and that the density functional by Lieb is differentiable at the E-V densities.Aussagen, die im Teil I benutzt oder erwahnt wurden, werderi bewiesen bzw. im Detail diskutiert. Insbesondere wird gezeigt, daB fur endlichdimensionale Zustttndsraume die strikt positiven Dichten, die strikt kleiner als zwei sind, E-V-erzeugbar sind sowie daB das Dichtefunktional von Lieb genau an den E-V-Dichten differenzierbar ist.The exact density functionals and several types of representability of one-particle densities have been introduced in Part I (Section 2) of this paper; for references [l to 221 also confer Part I.
'V-RepresentabilityThe distinction between E-, PS-, andD-V densities makes sense, since not every density For finite-dimensional state spaces, however, it has been proved for bosons in [23] that every strictly positive density is PS-V representable and the corresponding conjecture for fermions has been posed in the same paper. This conjecture can indeed be shown [24] by refining the considerations in [23], but we want to deal here with an essentially shorter proof.Theorem 5.1. For finite-dimensional state spaces every strictly positive density n ( r ) < 1 (or < 2 for spin degeneracy 2) is a fermion E-V density.Proof. We consider a system of N fermions (for notational convenience without spin degeneracy), where every particle has the state space RQ; q > N . The functional F,(n) as defined by (2.10) is convex. Hence, F,(n) has a continuous tangent functional at every ?z in the interior of the set of all fermion densities 8, = {(n(l), ... , %(a)) : 0 5 5 n ( r ) 5 1, C n ( r ) = N } . In the proof of theorem 6.1 we show that F L ( n ) possesses a continuous tangent functional exactly at E -V densities. Therefore, all densities from the interior of S, are E -V representable.
The exact one-particle density functionals by Levy and Lieb for the calculation of pound-state energies are analysed. A method for the calculation of the Levy-Lieb functional is proposed.Based on a work by Lieb, the range of validity of the exact self-consistent equations by Kohn and Sham is determined. A self-consistent procedure which is applicable in a wider range is presented.Die exakten Einteilchendichtefunktionale von Levy und Lieb zur Berechnung von Grundzustandsenergien werden analysiert. Eine Methode zur Berechnung des Levy-Lieb-Funktionals wird vorgeschlagen. Lieb folgend wird der Giiltigkeitsbereich der exakten selbstkonsistenteii Gleichungen von Kohn und Sham bestimmt. Es wird ein selbstkonsistentes Verfahren vorgestellt, das in einem groDeren Bereich anwendbar ist.
Let V^l ) and V^ be two ergodic random potentials on KA We consider the Schrόdinger operator H ω = H 0 + V ω , with H o = -A and forWe prove certain ergodic properties of the spectrum for this model, and express the integrated density of states in terms of the density of states of the stationary potentials V^1 ] and V^2\ Finally we prove the existence of the density of surface states for H ω .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.