The propagation of linear and nonlinear dust acoustic waves in a homogeneous unmagnetized, collisionless and dissipative dusty plasma consisted of extremely massive, micron-sized, negative dust grains has been investigated. The Boltzmann distribution is suggested for electrons whereas vortex-like distribution for ions. In the linear analysis, the dispersion relation is obtained, and the dependence of damping rate of the waves on the carrier wave number k, the dust kinematic viscosity coefficient g d and the ratio of the ions to the electrons temperatures r i is discussed. In the nonlinear analysis, the modified Korteweg-de Vries-Burgers (mKdV-Burgers) equation is derived via the reductive perturbation method. Bifurcation analysis is discussed for non-dissipative system in the absence of Burgers term. In the case of dissipative system, the tangent hyperbolic method is used to solve mKdV-Burgers equation, and yield the shock wave solution. The obtained results may be helpful in better understanding of waves propagation in the astrophysical plasmas as well as in inertial confinement fusion laboratory plasmas.
The nonlinear characteristics of the dust acoustic (DA) waves are studied in a homogeneous, collisionless, unmagnetized, and dissipative dusty plasma composed of negatively charged dusty grains, superthermal electrons, and nonextensive ions. Sagdeev pseudopotential technique has been employed to study the large amplitude DA waves. It (Sagdeev pseudopotential) has an evidence for the existence of compressive and rarefractive solitons. The global features of the phase portrait are investigated to understand the possible types of solutions of the Sagdeev form. On the other hand, the reductive perturbation technique has been used to study small amplitude DA waves and yields the Korteweg-de Vries-Burgers (KdV-Burgers) equation that exhibits both soliton and shock waves. The behavior of the obtained results of both large and small amplitude is investigated graphically in terms of the plasma parameters like dust kinematic viscosity, superthermal and nonextensive parameters.
The nonlinear properties of small amplitude electron-acoustic ( EA) solitary and shock waves in a homogeneous system of unmagnetized collisionless plasma consisted of a cold electron fluid and superthermal hot electrons obeying superthermal distribution, and stationary ions have been investigated. A reductive perturbation method was employed to obtain the Kadomstev-Petviashvili-Burgers (KP-Brugers) equation. Some solutions of physical interest are obtained. These solutions are related to soliton, monotonic and oscillatory shock waves and their behaviour are shown graphically. The formation of these solutions depends crucially on the value of the Burgers term and the plasma parameters as well. By using the tangent hyperbolic (tanh) method, another interesting type of solution which is a combination between shock and soliton waves is obtained . The topology of phase portrait and potential diagram of the KP-Brugers equation is investigated.The advantage of using this method is that one can predict different classes of the travelling wave solutions according to different phase orbits. The obtained results may be helpful in better understanding of waves propagation in various space plasma environments as well as in inertial confinement fusion laboratory plasmas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.