SUMMARY We have collected gastrointestinal, mainly colonic, mucus from humans,guinea pigs, rats, and normal and carbonic anhydrase II (CAII)-deficient mice. In the mucus of all species, substantial CA activity was present. Using antibodies against human CA isoforms we found that the human mucus CA differs from cytosolic CAI and CAII, membrane-bound CAIV, and the secreted CAVI of saliva. The high sensitivity of mucus CA to acetazolamide rules out its identity with cytosolic CAIII. Partial sequences obtained from the purified human mucus CA show similarity, but not identity, with human CAI, and clear differences from the other known CAs. Additional evidence concerning the CA isoform present in mucus was obtained for the mucus CA of other species and was derived from: (1) the mucus of CAII-deficient mice, whose high CA activity confirms that it is not CAII that is responsible; (2) the inhibitory effect of iodide, which shows that mucus CA from mice, guinea pig and humans does not have the high anion sensitivity of CAI; (3) the inactivating effect of 0.2%SDS on guinea pig, mouse and human mucus CA, ruling out the SDS-resistant CAIV; and (4) the partitioning of guinea-pig mucus CA into the water phase in Triton X114 phase separation experiments, which also argues against its identity with membrane-bound CAs, such as CAIV. A comparison of colonic mucus CA activity in normal and germ-free rats indicates that the mucus CA is not of bacterial origin but is produced by the gastrointestinal tissues. We conclude(from its immunoreactivity, from iodide inhibition and from partial amino acid sequences) that mucus CA of human origin probably represents an isozyme, which is specific for mucus and is not identical with the known CA isozymes. The results obtained for mucus CA of other species collectively point in the same direction.
A B S T R A C TRibbons of silicon were grown from a supercooled melt and examined by various techniques. From the morphology of the ribbons, dislocation patterns, twin structures, and microsegregation traces, it was shown that the basic growth sequence is similar to that given for germanium.Some differences are found, however, and these are described. Microsegregation traces were used to elucidate the growth sequence of degenerate ribbons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.